@misc{CohenCampisanoArrowsmithetal.2016, author = {Cohen, Abby and Campisano, Christopher and Arrowsmith, J. Ramon and Asrat, Asfawossen and Behrensmeyer, A. K. and Deino, A. and Feibel, C. and Hill, A. and Johnson, R. and Kingston, J. and Lamb, Henry F. and Lowenstein, T. and Noren, A. and Olago, D. and Owen, Richard Bernhart and Potts, R. and Reed, Kate and Renaut, R. and Sch{\"a}bitz, Frank and Tiercelin, J.-J. and Trauth, Martin H. and Wynn, J. and Ivory, S. and Brady, K. and O'Grady, R. and Rodysill, J. and Githiri, J. and Russell, Joellen and Foerster, Verena and Dommain, Ren{\´e} and Rucina, J. S. and Deocampo, D. and Russell, J. and Billingsley, A. and Beck, C. and Dorenbeck, G. and Dullo, L. and Feary, D. and Garello, D. and Gromig, R. and Johnson, T. and Junginger, Annett and Karanja, M. and Kimburi, E. and Mbuthia, A. and McCartney, Tannis and McNulty, E. and Muiruri, V. and Nambiro, E. and Negash, E. W. and Njagi, D. and Wilson, J. N. and Rabideaux, N. and Raub, Timothy and Sier, Mark Jan and Smith, P. and Urban, J. and Warren, M. and Yadeta, M. and Yost, Chad and Zinaye, B.}, title = {The Hominin Sites and Paleolakes Drilling Project}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {611}, doi = {10.25932/publishup-41249}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412498}, pages = {16}, year = {2016}, abstract = {The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012-2014 HSPDP coring campaign.}, language = {en} } @article{ProkhorovFoersterHeetal.2014, author = {Prokhorov, Boris E. and Foerster, M. and He, M. and Namgaladze, Alexander A. and Holschneider, Matthias}, title = {Using MFACE as input in the UAM to specify the MIT dynamics}, series = {Journal of geophysical research : Space physics}, volume = {119}, journal = {Journal of geophysical research : Space physics}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1002/2014JA019981}, pages = {11}, year = {2014}, abstract = {The magnetosphere-ionosphere-thermosphere (MIT) dynamic system significantly depends on the highly variable solar wind conditions, in particular, on changes of the strength and orientation of the interplanetary magnetic field (IMF). The solar wind and IMF interactions with the magnetosphere drive the MIT system via the magnetospheric field-aligned currents (FACs). The global modeling helps us to understand the physical background of this complex system. With the present study, we test the recently developed high-resolution empirical model of field-aligned currents MFACE (a high-resolution Model of Field-Aligned Currents through Empirical orthogonal functions analysis). These FAC distributions were used as input of the time-dependent, fully self-consistent global Upper Atmosphere Model (UAM) for different seasons and various solar wind and IMF conditions. The modeling results for neutral mass density and thermospheric wind are directly compared with the CHAMP satellite measurements. In addition, we perform comparisons with the global empirical models: the thermospheric wind model (HWM07) and the atmosphere density model (Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Extended 2000). The theoretical model shows a good agreement with the satellite observations and an improved behavior compared with the empirical models at high latitudes. Using the MFACE model as input parameter of the UAM model, we obtain a realistic distribution of the upper atmosphere parameters for the Northern and Southern Hemispheres during stable IMF orientation as well as during dynamic situations. This variant of the UAM can therefore be used for modeling the MIT system and space weather predictions.}, language = {en} } @article{FoersterAsratRamseyetal.2022, author = {Foerster, Verena and Asrat, Asfawossen and Ramsey, Christopher Bronk and Brown, Erik T. and Chapot, Melissa S. and Deino, Alan and D{\"u}sing, Walter and Grove, Matthew and Hahn, Annette and Junginger, Annett and Kaboth-Bahr, Stefanie and Lane, Christine S. and Opitz, Stephan and Noren, Anders and Roberts, Helen M. and Stockhecke, Mona and Tiedemann, Ralph and Vidal, Celine M. and Vogelsang, Ralf and Cohen, Andrew S. and Lamb, Henry F. and Schaebitz, Frank and Trauth, Martin H.}, title = {Pleistocene climate variability in eastern Africa influenced hominin evolution}, series = {Nature geoscience}, volume = {15}, journal = {Nature geoscience}, number = {10}, publisher = {Nature Publ. Group}, address = {London}, issn = {1752-0894}, doi = {10.1038/s41561-022-01032-y}, pages = {805 -- 811}, year = {2022}, abstract = {Despite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from similar to 620,000 to 275,000 years bp (episodes 1-6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7-9 (similar to 275,000-60,000 years bp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence of Homo sapiens in eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10-12 (similar to 60,000-10,000 years bp) could have facilitated the global dispersal of H. sapiens.}, language = {en} } @article{MemczakLausterKaretal.2016, author = {Memczak, Henry and Lauster, Daniel and Kar, Parimal and Di Lella, Santiago and Volkmer, Rudolf and Knecht, Volker and Herrmann, Andreas and Ehrentreich-Foerster, Eva and Bier, Frank Fabian and Stoecklein, Walter F. M.}, title = {Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0159074}, pages = {82 -- 90}, year = {2016}, abstract = {Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/MuteSwan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing.}, language = {en} } @article{FoersterDeocampoAsratetal.2018, author = {Foerster, Verena and Deocampo, Daniel M. and Asrat, Asfawossen and G{\"u}nter, Christina and Junginger, Annett and Kr{\"a}mer, Kai Hauke and Stroncik, Nicole A. and Trauth, Martin H.}, title = {Towards an understanding of climate proxy formation in the Chew Bahir basin, southern Ethiopian Rift}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {501}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2018.04.009}, pages = {111 -- 123}, year = {2018}, abstract = {Deciphering paleoclimate from lake sediments is a challenge due to the complex relationship between climate parameters and sediment composition. Here we show the links between potassium (K) concentrations in the sediments of the Chew Bahir basin in the Southern Ethiopian Rift and fluctuations in the catchment precipitation/evaporation balance. Our micro-X-ray fluorescence and X-ray diffraction results suggest that the most likely process linking climate with potassium concentrations is the authigenic illitization of smectites during episodes of higher alkalinity and salinity in the closed -basin lake, due to a drier climate. Whole-rock and clay size fraction analyses suggest that illitization of the Chew Bahir clay minerals with increasing evaporation is enhanced by octahedral Al-to-Mg substitution in the clay minerals, with the resulting layer charge increase facilitating potassium-fixation. Linking mineralogy with geochemistry shows the links between hydroclimatic control, process and formation of the Chew Bahir K patterns, in the context of well-known and widely documented eastern African climate fluctuations over the last 45,000 years. These results indicate characteristic mineral alteration patterns associated with orbitally controlled wet-dry cycles such as the African Humid Period (similar to 15-5 ka) or high-latitude controlled climate events such as the Younger Dryas (similar to 12.8-11.6 ka) chronozone. Determining the impact of authigenic mineral alteration on the Chew Bahir records enables the interpretation of the previously established pXRF-derived aridity proxy K and provides a better paleohydrological understanding of complex climate proxy formation.}, language = {en} }