@misc{SchroederLissoLangeetal.2009, author = {Schr{\"o}der, Florian and Lisso, Janina and Lange, Peggy and M{\"u}ssig, Carsten}, title = {The extracellular EXO protein mediates cell expansion in Arabidopsis leaves}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45107}, year = {2009}, abstract = {Background: The EXO (EXORDIUM) gene was identified as a potential mediator of brassinosteroid (BR)-promoted growth. It is part of a gene family with eight members in Arabidopsis. EXO gene expression is under control of BR, and EXO overexpression promotes shoot and root growth. In this study, the consequences of loss of EXO function are described. Results: The exo loss of function mutant showed diminished leaf and root growth and reduced biomass production. Light and scanning electron microscopy analyses revealed that impaired leaf growth is due to reduced cell expansion. Epidermis, palisade, and spongy parenchyma cells were smaller in comparison to the wild-type. The exo mutant showed reduced brassinolide-induced cotyledon and hypocotyl growth. In contrast, exo roots were significantly more sensitive to the inhibitory effect of synthetic brassinolide. Apart from reduced growth, exo did not show severe morphological abnormalities. Gene expression analyses of leaf material identified genes that showed robust EXO-dependent expression. Growth-related genes such as WAK1, EXP5, and KCS1, and genes involved in primary and secondary metabolism showed weaker expression in exo than in wild-type plants. However, the vast majority of BR-regulated genes were normally expressed in exo. HA- and GFP-tagged EXO proteins were targeted to the apoplast. Conclusion: The EXO gene is essential for cell expansion in leaves. Gene expression patterns and growth assays suggest that EXO mediates BR-induced leaf growth. However, EXO does not control BR-levels or BR-sensitivity in the shoot. EXO presumably is involved in a signalling process which coordinates BR-responses with environmental or developmental signals. The hypersensitivity of exo roots to BR suggests that EXO plays a diverse role in the control of BR responses in the root.}, language = {en} } @article{ZurellJeltschDormannetal.2009, author = {Zurell, Damaris and Jeltsch, Florian and Dormann, Carsten F. and Schr{\"o}der-Esselbach, Boris}, title = {Static species distribution models in dynamically changing systems : how good can predictions really be?}, issn = {0906-7590}, doi = {10.1111/j.1600-0587.2009.05810.x}, year = {2009}, abstract = {SDM performance varied for different range dynamics. Prediction accuracies decreased when abrupt range shifts occurred as species were outpaced by the rate of climate change, and increased again when a new equilibrium situation was realised. When ranges contracted, prediction accuracies increased as the absences were predicted well. Far- dispersing species were faster in tracking climate change, and were predicted more accurately by SDMs than short- dispersing species. BRTs mostly outperformed GLMs. The presence of a predator, and the inclusion of its incidence as an environmental predictor, made BRTs and GLMs perform similarly. Results are discussed in light of other studies dealing with effects of ecological traits and processes on SDM performance. Perspectives are given on further advancements of SDMs and for possible interfaces with more mechanistic approaches in order to improve predictions under environmental change.}, language = {en} }