@article{ReadKegelKluteetal.2013, author = {Read, Betsy A. and Kegel, Jessica and Klute, Mary J. and Kuo, Alan and Lefebvre, Stephane C. and Maumus, Florian and Mayer, Christoph and Miller, John and Monier, Adam and Salamov, Asaf and Young, Jeremy and Aguilar, Maria and Claverie, Jean-Michel and Frickenhaus, Stephan and Gonzalez, Karina and Herman, Emily K. and Lin, Yao-Cheng and Napier, Johnathan and Ogata, Hiroyuki and Sarno, Analissa F. and Shmutz, Jeremy and Schroeder, Declan and de Vargas, Colomban and Verret, Frederic and von Dassow, Peter and Valentin, Klaus and Van de Peer, Yves and Wheeler, Glen and Dacks, Joel B. and Delwiche, Charles F. and Dyhrman, Sonya T. and Gl{\"o}ckner, Gernot and John, Uwe and Richards, Thomas and Worden, Alexandra Z. and Zhang, Xiaoyu and Grigoriev, Igor V. and Allen, Andrew E. and Bidle, Kay and Borodovsky, M. and Bowler, C. and Brownlee, Colin and Cock, J. Mark and Elias, Marek and Gladyshev, Vadim N. and Groth, Marco and Guda, Chittibabu and Hadaegh, Ahmad and Iglesias-Rodriguez, Maria Debora and Jenkins, J. and Jones, Bethan M. and Lawson, Tracy and Leese, Florian and Lindquist, Erika and Lobanov, Alexei and Lomsadze, Alexandre and Malik, Shehre-Banoo and Marsh, Mary E. and Mackinder, Luke and Mock, Thomas and M{\"u}ller-R{\"o}ber, Bernd and Pagarete, Antonio and Parker, Micaela and Probert, Ian and Quesneville, Hadi and Raines, Christine and Rensing, Stefan A. and Riano-Pachon, Diego Mauricio and Richier, Sophie and Rokitta, Sebastian and Shiraiwa, Yoshihiro and Soanes, Darren M. and van der Giezen, Mark and Wahlund, Thomas M. and Williams, Bryony and Wilson, Willie and Wolfe, Gordon and Wurch, Louie L.}, title = {Pan genome of the phytoplankton Emiliania underpins its global distribution}, series = {Nature : the international weekly journal of science}, volume = {499}, journal = {Nature : the international weekly journal of science}, number = {7457}, publisher = {Nature Publ. Group}, address = {London}, organization = {Emiliania Huxleyi Annotation}, issn = {0028-0836}, doi = {10.1038/nature12221}, pages = {209 -- 213}, year = {2013}, abstract = {Coccolithophores have influenced the global climate for over 200 million years(1). These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems(2). They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space(3). Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean(4). Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.}, language = {en} } @article{TewsEstherMiltonetal.2006, author = {Tews, J{\"o}rg and Esther, Alexandra and Milton, Sue J. and Jeltsch, Florian}, title = {Linking a population model with an ecosystem model : assessing the impact of land use and climate change on savanna shrub cover dynamics}, doi = {10.1016/j.ecolmodel.2005.11.025}, year = {2006}, abstract = {In semiarid savannas of Southern Africa current land use practices and climate change may lead to substantial changes of vegetation structure in the near future, however uncertainty remains about the potential consequences and the magnitude of change. In this paper we study the impact of climate change, cattle grazing, and wood cutting on shrub cover dynamics in savannas of the southern Kalahari. We use an established savanna ecosystem model to simulate landscape dynamics in terms of rainfall, fire and distribution of the dominant tree Acacia erioloba. We then incorporate these data into a spatial population model of the common, fleshy-fruited shrub Grewia flava and investigate shrub cover dynamics for a period of 100 years. Depending on the intensity of commercial wood cutting practices tree removal of A. erioloba led to a strong decline of the G. flava population, as shrub recruitment is concentrated in tree sub-canopies due to bird-mediated seed dispersal. Under climate change shrub cover slightly decreased with decreasing precipitation and was unchanged with increase in precipitation variability. Contrarily, grazing by cattle strongly increased shrub cover and facilitated shrub encroachment because of cattle-induced distribution of G. flava seeds into the matrix vegetation. Knowledge of the latter process is particularly important because shrub invasion is a major concern for conservation and savanna rangeland management as a result of its adverse effects on livestock carrying capacity and biodiversity}, language = {en} } @techreport{ApelojgBosseGeschkeetal.2021, type = {Working Paper}, author = {Apelojg, Benjamin and Bosse, Stefanie and Geschke, Doreen and Hausner, Christian and Jennek, Julia and Liebner, Saskia and Lipka, Marlies and Marx, Alexandra and Pl{\"o}tner, Kathleen and Reimann, Christina and Sievert, Florian and Sp{\"o}rer, Nadine and Teke, G{\"u}lay and V{\"o}lkner, Katrin and Wabnitz, Juliane and Waschke, Lene and Zielke, Sonja and Zrenner, Laura}, title = {Rahmenkonzept der Universit{\"a}tsschule Potsdam}, editor = {Sp{\"o}rer, Nadine and V{\"o}lkner, Katrin}, organization = {Konzeptteam Universit{\"a}tsschule Potsdam}, doi = {10.25932/publishup-49138}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-491380}, pages = {46}, year = {2021}, abstract = {Das Rahmenkonzept der Universit{\"a}tsschule Potsdam beschreibt die Wertegrundlage und das p{\"a}dagogisch-didaktische sowie das wissenschaftliche Fundament einer zu gr{\"u}ndenden Universit{\"a}tsschule Potsdam. Wie andere Universit{\"a}tsschulen soll sich auch diese Schule durch eine enge und institutionalisierte Beziehung zwischen Schule und Universit{\"a}t auszeichnen, die den st{\"a}ndigen Wissenstransfer zwischen Schulpraxis, Wissenschaft, Lehrkr{\"a}ftebildung und Schulverwaltung unterst{\"u}tzt. Das Rahmenkonzept legt die Grundlagen f{\"u}r eine inklusive Schule, deren Sch{\"u}ler:innen einen Querschnitt der Gesellschaft abbilden, und die in ungleichheitssensiblen Bildungsangeboten alle Bildungsabschl{\"u}sse des Landes Brandenburg anbietet. Die Universit{\"a}tsschule soll den starken Segregationsprozessen in Potsdam entgegenwirken. Im Leitbild werden die Grundwerte (Nachhaltigkeit, Inklusion und Bildungsgerechtigkeit, Menschenrechte und Demokratie, Gemeinschaft, Ganzheitlichkeit) und die Bildungsziele (Transferf{\"a}higkeit, kritisch-reflexives Denken und lebensbegleitendes Lernen, Diversit{\"a}tsbewusstsein und Transkulturalit{\"a}t, Selbstkompetenz und Beziehungskompetenz, Kulturtechniken und digitale Kompetenz) der Universit{\"a}tsschule dargestellt. Das P{\"a}dagogische Konzept veranschaulicht, wie Werte und Bildungsziele in den Bereichen Schulform, Schulkultur, Lernkultur sowie Lernorte und Lernumgebung ausgestaltet werden k{\"o}nnen. Schließlich wird die Universit{\"a}tsschule als lernende und lehrende Institution beschrieben, die ein Ort des Transfers von Bildungsinnovationen ist. Daf{\"u}r soll eine Transferwerkstatt in der Schule verankert werden, die den Wissensaustausch der schulrelevanten Akteur:innen unterst{\"u}tzt und gestaltet.}, language = {de} } @phdthesis{Florian2012, author = {Florian, Alexandra}, title = {Dynamic analysis of metabolism under circumstances of altererd photorespiratory flux}, address = {Potsdam}, pages = {138 S.}, year = {2012}, language = {en} } @article{FreyHenzeNagletal.2009, author = {Frey, Simone K. and Henze, Andrea and Nagl, Britta and Raila, Jens and Scholze, Alexandra and Tepel, Martin and Schweigert, Florian J. and Zidek, Walter}, title = {Effect of renal replacement therapy on retinol-binding protein 4 isoforms}, issn = {0009-8981}, doi = {10.1016/j.cca.2008.11.008}, year = {2009}, abstract = {Background: Retinol-binding protein 4 (RBP4) levels are elevated in the serum of patients with kidney dysfunction. We recently showed that RBP4 isoforms including apo-RBP4 (RBP4 not bound to retinol) and RBP4 truncated at the C-terminus (RBP4-L, RBP4-LL) are increased in the serum of patients with kidney diseases but not in serum of patients with various liver diseases. The aim of this study was to investigate the effect of renal replacement therapy on RBP4 isoforms. Methods: We investigated serum levels of RBP4, apo-RBP4, holo-RBP4, RBP4-L, RBP4-LL, retinol and transthyretin (TTR) in 18 hemodialysis (HD) patients, 30 patients after renal transplantation (RTx) and in 35 healthy controls. RBP4 and TTR levels were measured by enzyme-linked immunosorbent assay, apo- and holo-RBP4 by native electrophoresis, retinol by high performance liquid chromatography and RBP4-L and RBP4-LL were analyzed by mass spectrometry. Results: HD and RTx patients had elevated RBP4, apo-RBP4 and RBP4-LL levels compared to controls. RTx patients had elevated amounts of RBP4-L compared to controls and elevated RBP4 and apo-RBP4 levels compared to HD patients. Conclusion: The results demonstrate a strong correlation between kidney function and RBP4 isoforms and provide data for investigating the relation of RBP4 and insulin resistance in these patients.}, language = {en} } @article{EstherGroeneveldEnrightetal.2010, author = {Esther, Alexandra and Groeneveld, Juergen and Enright, Neal J. and Miller, Ben P. and Lamont, Byron B. and Perry, George L. W. and Blank, F. Benjamin and Jeltsch, Florian}, title = {Sensitivity of plant functional types to climate change : classification tree analysis of a simulation model}, issn = {1100-9233}, doi = {10.1111/j.1654-1103.2009.01155.x}, year = {2010}, abstract = {Question: The majority of studies investigating the impact of climate change on local plant communities ignores changes in regional processes, such as immigration from the regional seed pool. Here we explore: (i) the potential impact of climate change on composition of the regional seed pool, (ii) the influence of changes in climate and in the regional seed pool on local community structure, and (iii) the combinations of life history traits, i.e. plant functional types (PFTs), that are most affected by environmental changes. Location: Fire-prone, Mediterranean-type shrublands in southwestern Australia. Methods: Spatially explicit simulation experiments were conducted at the population level under different rainfall and fire regime scenarios to determine the effect of environmental change on the regional seed pool for 38 PFTs. The effects of environmental and seed immigration changes on local community dynamics were then derived from community-level experiments. Classification tree analyses were used to investigate PFT- specific vulnerabilities to climate change. Results: The classification tree analyses revealed that responses of PFTs to climate change are determined by specific trait characteristics. PFT-specific seed production and community patterns responded in a complex manner to climate change. For example, an increase in annual rainfall caused an increase in numbers of dispersed seeds for some PFTs, but decreased PFT diversity in the community. Conversely, a simulated decrease in rainfall reduced the number of dispersed seeds and diversity of PFTs. Conclusions: PFT interactions and regional processes must be considered when assessing how local community structure will be affected by environmental change.}, language = {en} } @article{HenzeRailaScholzeetal.2013, author = {Henze, Andrea and Raila, Jens and Scholze, Alexandra and Zidek, Walter and Tepel, Martin and Schweigert, Florian J.}, title = {Does N-Acetylcysteine modulate post-translational modifications of transthyretin in hemodialysis patients?}, series = {Antioxidants \& redox signaling}, volume = {19}, journal = {Antioxidants \& redox signaling}, number = {11}, publisher = {Liebert}, address = {New Rochelle}, issn = {1523-0864}, doi = {10.1089/ars.2012.5125}, pages = {1166 -- 1172}, year = {2013}, abstract = {It is assumed that effects of the thiol antioxidant N-acetylcysteine (NAC) are mediated by interaction with protein-associated cysteine residues, however, information on protein level in vivo are missing. Therefore, we analyzed NAC-induced modifications of the protein transthyretin (TTR) in plasma of hemodialysis patients in a randomized, placebo-controlled study. TTR was selected due to its low molecular weight and the free cysteine residue in the polypeptide chain, which is known to be extensively modified by formation of mixed disulfides. The intravenous application of NAC during a hemodialysis session resulted in a substantial increase of native TTR from median 15\% (range 8.8\%-30\%) to median 40\% (37-50) and reduction of S-cysteinylated TTR [51\% (44-60) vs. 6.6\% (2.4-10)]. Additionally the pronounced formation of a TTR-NAC adduct was detected. However, all these modifications seemed to be reversible. Additionally, in vitro incubation of plasma with NAC confirmed the in vivo results and indicated that changes in post-translational modification pattern of TTR were a function of NAC concentration. Based on these observations and the essential metabolic and biochemical role of protein-associated cysteine residues we hypothesize that the interaction of NAC with proteins may explain altered protein functions due to modification of cysteine residues. Antioxid. Redox Signal. 19, 1166-1172.}, language = {en} } @article{EstherGroeneveldEnrightetal.2008, author = {Esther, Alexandra and Groeneveld, J{\"u}rgen and Enright, Neal J. and Miller, Ben P. and Lamont, Byron B. and Perry, George L. W. and Schurr, Frank Martin and Jeltsch, Florian}, title = {Assessing the importance of seed immigration on coexistence of plant functional types in a species-rich ecosystem}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2008.01.014}, year = {2008}, abstract = {Modelling and empirical studies have shown that input from the regional seed pool is essential to maintain local species diversity. However, most of these studies have concentrated on simplified, if not neutral, model systems, and focus on a limited subset of species or on aggregated measures of diversity only (e.g., species richness or Shannon diversity). Thus they ignore more complex species interactions and important differences between species. To gain a better understanding of how seed immigration affects community structure at the local scale in real communities we conducted computer simulation experiments based on plant functional types (PFTs) for a species-rich, fire-prone Mediterranean-type shrubland in Western Australia. We developed a spatially explicit simulation model to explore the community dynamics of 38 PFTs, defined by seven traits - regeneration mode, seed production, seed size, maximum crown diameter, drought tolerance, dispersal mode and seed bank type - representing 78 woody species. Model parameterisation is based on published and unpublished data on the population dynamics of shrub species collected over 18 years. Simulation experiments are based on two contrasting seed immigration scenarios: (1) the 'equal seed input number' scenario, where the number of immigrant seeds is the same for all PFTs, and (2) the 'equal seed input mass' scenario, where the cumulative mass of migrating seeds is the same for all PFTs. Both scenarios were systematically tested and compared for different overall seed input values. Without immigration the local community drifts towards a state with only 13 coexisting PFTs. With increasing immigration rates in terms of overall mass of seeds the simulated number of coexisting PFTs and Shannon diversity quickly approaches values observed in the field. The equal seed mass scenario resulted in a more diverse community than did the seed number scenario. The model successfully approximates the frequency distributions (relative densities) of all individual plant traits except seed size for scenarios associated with equal seed input mass and high immigration rate. However, no scenario satisfactorily approximated the frequency distribution for all traits in combination. Our results show that regional seed input can explain the more aggregated measures of local community structure, and some, but not all, aspects of community composition. This points to the possible importance of other (untested) processes and traits (e.g., dispersal vectors) operating at the local scale. Our modelling framework can readily allow new factors to be systematically investigated, which is a major advantage compared to previous simulation studies, as it allows us to find structurally realistic models, which can address questions pertinent to ecological theory and to conservation management.}, language = {en} } @article{HenzeFreyRailaetal.2010, author = {Henze, Andrea and Frey, Simone K. and Raila, Jens and Scholze, Alexandra and Spranger, Joachim and Weickert, Martin O. and Tepel, Martin and Zidek, Walter and Schweigert, Florian J.}, title = {Alterations of retinol-binding protein 4 species in patients with different stages of chronic kidney disease and their relation to lipid parameters}, issn = {0006-291X}, doi = {10.1016/j.bbrc.2010.01.082}, year = {2010}, abstract = {Retinol-binding protein 4 (RBP4) is elevated in patients with chronic kidney disease (CKD) and has been discussed as marker of kidney function. In addition to an elevated concentration, the existence of truncated RBP4 species, RBP4-L (truncated at last C-terminal leucine) and RBP4-LL (truncated at both C-terminal leucines), has been reported in serum of hemodialysis patients. Since little is known about the occurrence of RBP4 species during the progression of CKD it was the aim of this study to analyse this possible association. The presence of RBP4, RBP4-L, RBP4- LL and transthyretin (TTR) was assessed in serum of 45 healthy controls and 52 patients with stage 2-5 of CKD using ELISA and RBP4 immunoprecipitation with subsequent MALDI-TOF-MS analysis. A reduction of glomerular filtration rate was accompanied by a gradual elevation of RBP4 serum levels and relative amounts of RBP4-LL. Correlation analysis revealed a strong association of the RBP4-TTR ratio with parameters of lipid metabolism and with diabetes-related factors. In conclusion, RBP4 serum concentration and the appearance of RBP4-LL seem to be influenced by kidney function. Furthermore, the RBP4-TTR ratio may provide diagnostic potential with regard to metabolic complications in CKD patients.}, language = {en} } @inproceedings{HenzeRailaScholzeetal.2013, author = {Henze, Andrea and Raila, Jens and Scholze, Alexandra and Schweigert, Florian J. and Tepel, Martin}, title = {Administration of N-Acetylcyteine causes beneficial posttranslationalmodifications of transthyretin in hemodialysis patients}, series = {Nephrology, dialysis, transplantation}, volume = {28}, booktitle = {Nephrology, dialysis, transplantation}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0931-0509}, pages = {164 -- 164}, year = {2013}, language = {en} } @article{EstherGroeneveldEnrightetal.2011, author = {Esther, Alexandra and Groeneveld, J{\"u}rgen and Enright, Neal J. and Miller, Ben P. and Lamont, Byron B. and Perry, George L. W. and Tietjen, Britta and Jeltsch, Florian}, title = {Low-dimensional trade-offs fail to explain richness and structure in species-rich plant communities}, series = {Theoretical ecology}, volume = {4}, journal = {Theoretical ecology}, number = {4}, publisher = {Springer}, address = {Heidelberg}, issn = {1874-1738}, doi = {10.1007/s12080-010-0092-y}, pages = {495 -- 511}, year = {2011}, abstract = {Mathematical models and ecological theory suggest that low-dimensional life history trade-offs (i.e. negative correlation between two life history traits such as competition vs. colonisation) may potentially explain the maintenance of species diversity and community structure. In the absence of trade-offs, we would expect communities to be dominated by 'super-types' characterised by mainly positive trait expressions. However, it has proven difficult to find strong empirical evidence for such trade-offs in species-rich communities. We developed a spatially explicit, rule-based and individual-based stochastic model to explore the importance of low-dimensional trade-offs. This model simulates the community dynamics of 288 virtual plant functional types (PFTs), each of which is described by seven life history traits. We consider trait combinations that fit into the trade-off concept, as well as super-types with little or no energy constraints or resource limitations, and weak PFTs, which do not exploit resources efficiently. The model is parameterised using data from a fire-prone, species-rich Mediterranean-type shrubland in southwestern Australia. We performed an exclusion experiment, where we sequentially removed the strongest PFT in the simulation and studied the remaining communities. We analysed the impact of traits on performance of PFTs in the exclusion experiment with standard and boosted regression trees. Regression tree analysis of the simulation results showed that the trade-off concept is necessary for PFT viability in the case of weak trait expression combinations such as low seed production or small seeds. However, species richness and diversity can be high despite the presence of super-types. Furthermore, the exclusion of super-types does not necessarily lead to a large increase in PFT richness and diversity. We conclude that low-dimensional trade-offs do not provide explanations for multi-species co-existence contrary to the prediction of many conceptual models.}, language = {en} } @article{EngqvistSchmitzGertzmannetal.2015, author = {Engqvist, Martin K. M. and Schmitz, Jessica and Gertzmann, Anke and Florian, Alexandra and Jaspert, Nils and Arif, Muhammad and Balazadeh, Salma and M{\"u}ller-R{\"o}ber, Bernd and Fernie, Alisdair R. and Maurino, Veronica G.}, title = {GLYCOLATE OXIDASE3, a Glycolate Oxidase Homolog of Yeast L-Lactate Cytochrome c Oxidoreductase, Supports L-Lactate Oxidation in Roots of Arabidopsis}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {169}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {2}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.15.01003}, pages = {1042 -- 1061}, year = {2015}, abstract = {In roots of Arabidopsis (Arabidopsis thaliana), L-lactate is generated by the reduction of pyruvate via L-lactate dehydrogenase, but this enzyme does not efficiently catalyze the reverse reaction. Here, we identify the Arabidopsis glycolate oxidase (GOX) paralogs GOX1, GOX2, and GOX3 as putative L-lactate-metabolizing enzymes based on their homology to CYB2, the L-lactate cytochrome c oxidoreductase from the yeast Saccharomyces cerevisiae. We found that GOX3 uses L-lactate with a similar efficiency to glycolate; in contrast, the photorespiratory isoforms GOX1 and GOX2, which share similar enzymatic properties, use glycolate with much higher efficiencies than L-lactate. The key factor making GOX3 more efficient with L-lactate than GOX1 and GOX2 is a 5- to 10-fold lower Km for the substrate. Consequently, only GOX3 can efficiently metabolize L-lactate at low intracellular concentrations. Isotope tracer experiments as well as substrate toxicity tests using GOX3 loss-of-function and overexpressor plants indicate that L-lactate is metabolized in vivo by GOX3. Moreover, GOX3 rescues the lethal growth phenotype of a yeast strain lacking CYB2, which cannot grow on L-lactate as a sole carbon source. GOX3 is predominantly present in roots and mature to aging leaves but is largely absent from young photosynthetic leaves, indicating that it plays a role predominantly in heterotrophic rather than autotrophic tissues, at least under standard growth conditions. In roots of plants grown under normoxic conditions, loss of function of GOX3 induces metabolic rearrangements that mirror wild-type responses under hypoxia. Thus, we identified GOX3 as the enzyme that metabolizes L-lactate to pyruvate in vivo and hypothesize that it may ensure the sustainment of low levels of L-lactate after its formation under normoxia.}, language = {en} } @article{WuttkeLiLietal.2019, author = {Wuttke, Matthias and Li, Yong and Li, Man and Sieber, Karsten B. and Feitosa, Mary F. and Gorski, Mathias and Tin, Adrienne and Wang, Lihua and Chu, Audrey Y. and Hoppmann, Anselm and Kirsten, Holger and Giri, Ayush and Chai, Jin-Fang and Sveinbjornsson, Gardar and Tayo, Bamidele O. and Nutile, Teresa and Fuchsberger, Christian and Marten, Jonathan and Cocca, Massimiliano and Ghasemi, Sahar and Xu, Yizhe and Horn, Katrin and Noce, Damia and Van der Most, Peter J. and Sedaghat, Sanaz and Yu, Zhi and Akiyama, Masato and Afaq, Saima and Ahluwalia, Tarunveer Singh and Almgren, Peter and Amin, Najaf and Arnlov, Johan and Bakker, Stephan J. L. and Bansal, Nisha and Baptista, Daniela and Bergmann, Sven and Biggs, Mary L. and Biino, Ginevra and Boehnke, Michael and Boerwinkle, Eric and Boissel, Mathilde and B{\"o}ttinger, Erwin and Boutin, Thibaud S. and Brenner, Hermann and Brumat, Marco and Burkhardt, Ralph and Butterworth, Adam S. and Campana, Eric and Campbell, Archie and Campbell, Harry and Canouil, Mickael and Carroll, Robert J. and Catamo, Eulalia and Chambers, John C. and Chee, Miao-Ling and Chee, Miao-Li and Chen, Xu and Cheng, Ching-Yu and Cheng, Yurong and Christensen, Kaare and Cifkova, Renata and Ciullo, Marina and Concas, Maria Pina and Cook, James P. and Coresh, Josef and Corre, Tanguy and Sala, Cinzia Felicita and Cusi, Daniele and Danesh, John and Daw, E. Warwick and De Borst, Martin H. and De Grandi, Alessandro and De Mutsert, Renee and De Vries, Aiko P. J. and Degenhardt, Frauke and Delgado, Graciela and Demirkan, Ayse and Di Angelantonio, Emanuele and Dittrich, Katalin and Divers, Jasmin and Dorajoo, Rajkumar and Eckardt, Kai-Uwe and Ehret, Georg and Elliott, Paul and Endlich, Karlhans and Evans, Michele K. and Felix, Janine F. and Foo, Valencia Hui Xian and Franco, Oscar H. and Franke, Andre and Freedman, Barry I. and Freitag-Wolf, Sandra and Friedlander, Yechiel and Froguel, Philippe and Gansevoort, Ron T. and Gao, He and Gasparini, Paolo and Gaziano, J. Michael and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Giulianini, Franco and Gogele, Martin and Gordon, Scott D. and Gudbjartsson, Daniel F. and Gudnason, Vilmundur and Haller, Toomas and Hamet, Pavel and Harris, Tamara B. and Hartman, Catharina A. and Hayward, Caroline and Hellwege, Jacklyn N. and Heng, Chew-Kiat and Hicks, Andrew A. and Hofer, Edith and Huang, Wei and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Indridason, Olafur S. and Ingelsson, Erik and Ising, Marcus and Jaddoe, Vincent W. V. and Jakobsdottir, Johanna and Jonas, Jost B. and Joshi, Peter K. and Josyula, Navya Shilpa and Jung, Bettina and Kahonen, Mika and Kamatani, Yoichiro and Kammerer, Candace M. and Kanai, Masahiro and Kastarinen, Mika and Kerr, Shona M. and Khor, Chiea-Chuen and Kiess, Wieland and Kleber, Marcus E. and Koenig, Wolfgang and Kooner, Jaspal S. and Korner, Antje and Kovacs, Peter and Kraja, Aldi T. and Krajcoviechova, Alena and Kramer, Holly and Kramer, Bernhard K. and Kronenberg, Florian and Kubo, Michiaki and Kuhnel, Brigitte and Kuokkanen, Mikko and Kuusisto, Johanna and La Bianca, Martina and Laakso, Markku and Lange, Leslie A. and Langefeld, Carl D. and Lee, Jeannette Jen-Mai and Lehne, Benjamin and Lehtimaki, Terho and Lieb, Wolfgang and Lim, Su-Chi and Lind, Lars and Lindgren, Cecilia M. and Liu, Jun and Liu, Jianjun and Loeffler, Markus and Loos, Ruth J. F. and Lucae, Susanne and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Magi, Reedik and Magnusson, Patrik K. E. and Mahajan, Anubha and Martin, Nicholas G. and Martins, Jade and Marz, Winfried and Mascalzoni, Deborah and Matsuda, Koichi and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mikaelsdottir, Evgenia K. and Milaneschi, Yuri and Miliku, Kozeta and Mishra, Pashupati P. and Program, V. A. Million Veteran and Mohlke, Karen L. and Mononen, Nina and Montgomery, Grant W. and Mook-Kanamori, Dennis O. and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nalls, Mike A. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and Noordam, Raymond and Olafsson, Isleifur and Oldehinkel, Albertine J. and Orho-Melander, Marju and Ouwehand, Willem H. and Padmanabhan, Sandosh and Palmer, Nicholette D. and Palsson, Runolfur and Penninx, Brenda W. J. H. and Perls, Thomas and Perola, Markus and Pirastu, Mario and Pirastu, Nicola and Pistis, Giorgio and Podgornaia, Anna I. and Polasek, Ozren and Ponte, Belen and Porteous, David J. and Poulain, Tanja and Pramstaller, Peter P. and Preuss, Michael H. and Prins, Bram P. and Province, Michael A. and Rabelink, Ton J. and Raffield, Laura M. and Raitakari, Olli T. and Reilly, Dermot F. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Ridker, Paul M. and Rivadeneira, Fernando and Rizzi, Federica and Roberts, David J. and Robino, Antonietta and Rossing, Peter and Rudan, Igor and Rueedi, Rico and Ruggiero, Daniela and Ryan, Kathleen A. and Saba, Yasaman and Sabanayagam, Charumathi and Salomaa, Veikko and Salvi, Erika and Saum, Kai-Uwe and Schmidt, Helena and Schmidt, Reinhold and Ben Schottker, and Schulz, Christina-Alexandra and Schupf, Nicole and Shaffer, Christian M. and Shi, Yuan and Smith, Albert V. and Smith, Blair H. and Soranzo, Nicole and Spracklen, Cassandra N. and Strauch, Konstantin and Stringham, Heather M. and Stumvoll, Michael and Svensson, Per O. and Szymczak, Silke and Tai, E-Shyong and Tajuddin, Salman M. and Tan, Nicholas Y. Q. and Taylor, Kent D. and Teren, Andrej and Tham, Yih-Chung and Thiery, Joachim and Thio, Chris H. L. and Thomsen, Hauke and Thorleifsson, Gudmar and Toniolo, Daniela and Tonjes, Anke and Tremblay, Johanne and Tzoulaki, Ioanna and Uitterlinden, Andre G. and Vaccargiu, Simona and Van Dam, Rob M. and Van der Harst, Pim and Van Duijn, Cornelia M. and Edward, Digna R. Velez and Verweij, Niek and Vogelezang, Suzanne and Volker, Uwe and Vollenweider, Peter and Waeber, Gerard and Waldenberger, Melanie and Wallentin, Lars and Wang, Ya Xing and Wang, Chaolong and Waterworth, Dawn M. and Bin Wei, Wen and White, Harvey and Whitfield, John B. and Wild, Sarah H. and Wilson, James F. and Wojczynski, Mary K. and Wong, Charlene and Wong, Tien-Yin and Xu, Liang and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Weihua and Zonderman, Alan B. and Rotter, Jerome I. and Bochud, Murielle and Psaty, Bruce M. and Vitart, Veronique and Wilson, James G. and Dehghan, Abbas and Parsa, Afshin and Chasman, Daniel I. and Ho, Kevin and Morris, Andrew P. and Devuyst, Olivier and Akilesh, Shreeram and Pendergrass, Sarah A. and Sim, Xueling and Boger, Carsten A. and Okada, Yukinori and Edwards, Todd L. and Snieder, Harold and Stefansson, Kari and Hung, Adriana M. and Heid, Iris M. and Scholz, Markus and Teumer, Alexander and Kottgen, Anna and Pattaro, Cristian}, title = {A catalog of genetic loci associated with kidney function from analyses of a million individuals}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {6}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Lifelines COHort Study}, issn = {1061-4036}, doi = {10.1038/s41588-019-0407-x}, pages = {957 -- +}, year = {2019}, abstract = {Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.}, language = {en} } @misc{GorskiJungLietal.2020, author = {Gorski, Mathias and Jung, Bettina and Li, Yong and Matias-Garcia, Pamela R. and Wuttke, Matthias and Coassin, Stefan and Thio, Chris H. L. and Kleber, Marcus E. and Winkler, Thomas W. and Wanner, Veronika and Chai, Jin-Fang and Chu, Audrey Y. and Cocca, Massimiliano and Feitosa, Mary F. and Ghasemi, Sahar and Hoppmann, Anselm and Horn, Katrin and Li, Man and Nutile, Teresa and Scholz, Markus and Sieber, Karsten B. and Teumer, Alexander and Tin, Adrienne and Wang, Judy and Tayo, Bamidele O. and Ahluwalia, Tarunveer S. and Almgren, Peter and Bakker, Stephan J. L. and Banas, Bernhard and Bansal, Nisha and Biggs, Mary L. and Boerwinkle, Eric and B{\"o}ttinger, Erwin and Brenner, Hermann and Carroll, Robert J. and Chalmers, John and Chee, Miao-Li and Chee, Miao-Ling and Cheng, Ching-Yu and Coresh, Josef and de Borst, Martin H. and Degenhardt, Frauke and Eckardt, Kai-Uwe and Endlich, Karlhans and Franke, Andre and Freitag-Wolf, Sandra and Gampawar, Piyush and Gansevoort, Ron T. and Ghanbari, Mohsen and Gieger, Christian and Hamet, Pavel and Ho, Kevin and Hofer, Edith and Holleczek, Bernd and Foo, Valencia Hui Xian and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Josyula, Navya Shilpa and Kahonen, Mika and Khor, Chiea-Chuen and Koenig, Wolfgang and Kramer, Holly and Kraemer, Bernhard K. and Kuehnel, Brigitte and Lange, Leslie A. and Lehtimaki, Terho and Lieb, Wolfgang and Loos, Ruth J. F. and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Milaneschi, Yuri and Mishra, Pashupati P. and Mononen, Nina and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and O'Donoghue, Michelle L. and Orho-Melander, Marju and Pendergrass, Sarah A. and Penninx, Brenda W. J. H. and Preuss, Michael H. and Psaty, Bruce M. and Raffield, Laura M. and Raitakari, Olli T. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Rosenkranz, Alexander R. and Rossing, Peter and Rotter, Jerome and Sabanayagam, Charumathi and Schmidt, Helena and Schmidt, Reinhold and Schoettker, Ben and Schulz, Christina-Alexandra and Sedaghat, Sanaz and Shaffer, Christian M. and Strauch, Konstantin and Szymczak, Silke and Taylor, Kent D. and Tremblay, Johanne and Chaker, Layal and van der Harst, Pim and van der Most, Peter J. and Verweij, Niek and Voelker, Uwe and Waldenberger, Melanie and Wallentin, Lars and Waterworth, Dawn M. and White, Harvey D. and Wilson, James G. and Wong, Tien-Yin and Woodward, Mark and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Yan and Snieder, Harold and Wanner, Christoph and Boger, Carsten A. and Kottgen, Anna and Kronenberg, Florian and Pattaro, Cristian and Heid, Iris M.}, title = {Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, number = {19}, doi = {10.25932/publishup-56537}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-565379}, pages = {14}, year = {2020}, abstract = {Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m(2)/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25\% or more and eGFRcrea under 60 mL/min/1.73m(2) at follow-up among those with eGFRcrea 60 mL/min/1.73m(2) or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or (LARP4B). Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95\% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.}, language = {en} } @article{GorskiJungLietal.2020, author = {Gorski, Mathias and Jung, Bettina and Li, Yong and Matias-Garcia, Pamela R. and Wuttke, Matthias and Coassin, Stefan and Thio, Chris H. L. and Kleber, Marcus E. and Winkler, Thomas W. and Wanner, Veronika and Chai, Jin-Fang and Chu, Audrey Y. and Cocca, Massimiliano and Feitosa, Mary F. and Ghasemi, Sahar and Hoppmann, Anselm and Horn, Katrin and Li, Man and Nutile, Teresa and Scholz, Markus and Sieber, Karsten B. and Teumer, Alexander and Tin, Adrienne and Wang, Judy and Tayo, Bamidele O. and Ahluwalia, Tarunveer S. and Almgren, Peter and Bakker, Stephan J. L. and Banas, Bernhard and Bansal, Nisha and Biggs, Mary L. and Boerwinkle, Eric and B{\"o}ttinger, Erwin and Brenner, Hermann and Carroll, Robert J. and Chalmers, John and Chee, Miao-Li and Chee, Miao-Ling and Cheng, Ching-Yu and Coresh, Josef and de Borst, Martin H. and Degenhardt, Frauke and Eckardt, Kai-Uwe and Endlich, Karlhans and Franke, Andre and Freitag-Wolf, Sandra and Gampawar, Piyush and Gansevoort, Ron T. and Ghanbari, Mohsen and Gieger, Christian and Hamet, Pavel and Ho, Kevin and Hofer, Edith and Holleczek, Bernd and Foo, Valencia Hui Xian and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Josyula, Navya Shilpa and Kahonen, Mika and Khor, Chiea-Chuen and Koenig, Wolfgang and Kramer, Holly and Kraemer, Bernhard K. and Kuehnel, Brigitte and Lange, Leslie A. and Lehtimaki, Terho and Lieb, Wolfgang and Loos, Ruth J. F. and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Milaneschi, Yuri and Mishra, Pashupati P. and Mononen, Nina and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and O'Donoghue, Michelle L. and Orho-Melander, Marju and Pendergrass, Sarah A. and Penninx, Brenda W. J. H. and Preuss, Michael H. and Psaty, Bruce M. and Raffield, Laura M. and Raitakari, Olli T. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Rosenkranz, Alexander R. and Rossing, Peter and Rotter, Jerome and Sabanayagam, Charumathi and Schmidt, Helena and Schmidt, Reinhold and Schoettker, Ben and Schulz, Christina-Alexandra and Sedaghat, Sanaz and Shaffer, Christian M. and Strauch, Konstantin and Szymczak, Silke and Taylor, Kent D. and Tremblay, Johanne and Chaker, Layal and van der Harst, Pim and van der Most, Peter J. and Verweij, Niek and Voelker, Uwe and Waldenberger, Melanie and Wallentin, Lars and Waterworth, Dawn M. and White, Harvey D. and Wilson, James G. and Wong, Tien-Yin and Woodward, Mark and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Yan and Snieder, Harold and Wanner, Christoph and Boger, Carsten A. and Kottgen, Anna and Kronenberg, Florian and Pattaro, Cristian and Heid, Iris M.}, title = {Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline}, series = {Kidney international : official journal of the International Society of Nephrology}, volume = {99}, journal = {Kidney international : official journal of the International Society of Nephrology}, number = {4}, publisher = {Elsevier}, address = {New York}, organization = {Lifelines Cohort Study
Regeneron Genetics Ctr}, issn = {0085-2538}, doi = {10.1016/j.kint.2020.09.030}, pages = {926 -- 939}, year = {2020}, abstract = {Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m(2)/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25\% or more and eGFRcrea under 60 mL/min/1.73m(2) at follow-up among those with eGFRcrea 60 mL/min/1.73m(2) or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or (LARP4B). Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95\% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.}, language = {en} }