@article{SteinbergFischerKiuliesetal.1999, author = {Steinberg, Pablo and Fischer, Thomas M. and Kiulies, Sandra and Biefang, Katja and Platt, Karl-Ludwig and Oesch, Franz and B{\"o}ttger, Thomas and Bulitta, Clemens and Kempf, Peter and Hengstler, Jan Georg}, title = {Drug metabolizing capacity of cryopreserved human, rat and mouse liver parenchymal cells in suspension}, year = {1999}, language = {en} } @article{KuehnPingelBreusingetal.2011, author = {Kuehn, Sergei and Pingel, Patrick and Breusing, Markus and Fischer, Thomas and Stumpe, Joachim and Neher, Dieter and Elsaesser, Thomas}, title = {High-Resolution Near-Field Optical Investigation of Crystalline Domains in Oligomeric PQT-12 Thin Films}, series = {Advanced functional materials}, volume = {21}, journal = {Advanced functional materials}, number = {5}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1616-301X}, doi = {10.1002/adfm.201001978}, pages = {860 -- 868}, year = {2011}, abstract = {The structure and morphology on different length scales dictate both the electrical and optical properties of organic semiconductor thin films. Using a combination of spectroscopic methods, including scanning near-field optical microscopy, we study the domain structure and packing quality of highly crystalline thin films of oligomeric PQT-12 with 100 nanometer spatial resolution. The pronounced optical anisotropy of these layers measured by polarized light microscopy facilitates the identification of regions with uniform molecular orientation. We find that a hierarchical order on three different length scales exists in these layers, made up of distinct well-ordered dichroic areas at the ten-micrometer-scale, which are sub-divided into domains with different molecular in-plane orientation. These serve as a template for the formation of smaller needle-like crystallites at the layer surface. A high degree of crystalline order is believed to be the cause of the rather high field-effect mobility of these layers of 10(-3) cm 2 V(-1) s(-1), whereas it is limited by the presence of domain boundaries at macroscopic distances.}, language = {en} } @article{TuckerBoehningGaeseFaganetal.2018, author = {Tucker, Marlee A. and Boehning-Gaese, Katrin and Fagan, William F. and Fryxell, John M. and Van Moorter, Bram and Alberts, Susan C. and Ali, Abdullahi H. and Allen, Andrew M. and Attias, Nina and Avgar, Tal and Bartlam-Brooks, Hattie and Bayarbaatar, Buuveibaatar and Belant, Jerrold L. and Bertassoni, Alessandra and Beyer, Dean and Bidner, Laura and van Beest, Floris M. and Blake, Stephen and Blaum, Niels and Bracis, Chloe and Brown, Danielle and de Bruyn, P. J. Nico and Cagnacci, Francesca and Calabrese, Justin M. and Camilo-Alves, Constanca and Chamaille-Jammes, Simon and Chiaradia, Andre and Davidson, Sarah C. and Dennis, Todd and DeStefano, Stephen and Diefenbach, Duane and Douglas-Hamilton, Iain and Fennessy, Julian and Fichtel, Claudia and Fiedler, Wolfgang and Fischer, Christina and Fischhoff, Ilya and Fleming, Christen H. and Ford, Adam T. and Fritz, Susanne A. and Gehr, Benedikt and Goheen, Jacob R. and Gurarie, Eliezer and Hebblewhite, Mark and Heurich, Marco and Hewison, A. J. Mark and Hof, Christian and Hurme, Edward and Isbell, Lynne A. and Janssen, Rene and Jeltsch, Florian and Kaczensky, Petra and Kane, Adam and Kappeler, Peter M. and Kauffman, Matthew and Kays, Roland and Kimuyu, Duncan and Koch, Flavia and Kranstauber, Bart and LaPoint, Scott and Leimgruber, Peter and Linnell, John D. C. and Lopez-Lopez, Pascual and Markham, A. Catherine and Mattisson, Jenny and Medici, Emilia Patricia and Mellone, Ugo and Merrill, Evelyn and Mourao, Guilherme de Miranda and Morato, Ronaldo G. and Morellet, Nicolas and Morrison, Thomas A. and Diaz-Munoz, Samuel L. and Mysterud, Atle and Nandintsetseg, Dejid and Nathan, Ran and Niamir, Aidin and Odden, John and Oliveira-Santos, Luiz Gustavo R. and Olson, Kirk A. and Patterson, Bruce D. and de Paula, Rogerio Cunha and Pedrotti, Luca and Reineking, Bjorn and Rimmler, Martin and Rogers, Tracey L. and Rolandsen, Christer Moe and Rosenberry, Christopher S. and Rubenstein, Daniel I. and Safi, Kamran and Said, Sonia and Sapir, Nir and Sawyer, Hall and Schmidt, Niels Martin and Selva, Nuria and Sergiel, Agnieszka and Shiilegdamba, Enkhtuvshin and Silva, Joao Paulo and Singh, Navinder and Solberg, Erling J. and Spiegel, Orr and Strand, Olav and Sundaresan, Siva and Ullmann, Wiebke and Voigt, Ulrich and Wall, Jake and Wattles, David and Wikelski, Martin and Wilmers, Christopher C. and Wilson, John W. and Wittemyer, George and Zieba, Filip and Zwijacz-Kozica, Tomasz and Mueller, Thomas}, title = {Moving in the Anthropocene}, series = {Science}, volume = {359}, journal = {Science}, number = {6374}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aam9712}, pages = {466 -- 469}, year = {2018}, abstract = {Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.}, language = {en} } @article{NoonanTuckerFlemingetal.2018, author = {Noonan, Michael J. and Tucker, Marlee A. and Fleming, Christen H. and Akre, Thomas S. and Alberts, Susan C. and Ali, Abdullahi H. and Altmann, Jeanne and Antunes, Pamela Castro and Belant, Jerrold L. and Beyer, Dean and Blaum, Niels and Boehning-Gaese, Katrin and Cullen Jr, Laury and de Paula, Rogerio Cunha and Dekker, Jasja and Drescher-Lehman, Jonathan and Farwig, Nina and Fichtel, Claudia and Fischer, Christina and Ford, Adam T. and Goheen, Jacob R. and Janssen, Rene and Jeltsch, Florian and Kauffman, Matthew and Kappeler, Peter M. and Koch, Flavia and LaPoint, Scott and Markham, A. Catherine and Medici, Emilia Patricia and Morato, Ronaldo G. and Nathan, Ran and Oliveira-Santos, Luiz Gustavo R. and Olson, Kirk A. and Patterson, Bruce D. and Paviolo, Agustin and Ramalho, Emiliano Estero and Rosner, Sascha and Schabo, Dana G. and Selva, Nuria and Sergiel, Agnieszka and da Silva, Marina Xavier and Spiegel, Orr and Thompson, Peter and Ullmann, Wiebke and Zieba, Filip and Zwijacz-Kozica, Tomasz and Fagan, William F. and Mueller, Thomas and Calabrese, Justin M.}, title = {A comprehensive analysis of autocorrelation and bias in home range estimation}, series = {Ecological monographs : a publication of the Ecological Society of America.}, volume = {89}, journal = {Ecological monographs : a publication of the Ecological Society of America.}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9615}, doi = {10.1002/ecm.1344}, pages = {21}, year = {2018}, abstract = {Home range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive data set of GPS locations from 369 individuals representing 27 species distributed across five continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated-Gaussian reference function [AKDE], Silverman's rule of thumb, and least squares cross-validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half-sample cross-validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation ( N̂ area ) to quantify the information content of each data set. We found that AKDE 95\% area estimates were larger than conventional IID-based estimates by a mean factor of 2. The median number of cross-validated locations included in the hold-out sets by AKDE 95\% (or 50\%) estimates was 95.3\% (or 50.1\%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing N̂ area. To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animal's movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small N̂ area. While 72\% of the 369 empirical data sets had >1,000 total observations, only 4\% had an N̂ area >1,000, where 30\% had an N̂ area <30. In this frequently encountered scenario of small N̂ area, AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data.}, language = {en} } @article{GerthKlassertDolketal.2016, author = {Gerth, Sabrina and Klassert, Annegret and Dolk, Thomas and Fliesser, Michael and Fischer, Martin H. and Nottbusch, Guido and Festman, Julia}, title = {Is Handwriting Performance Affected by the Writing Surface?}, series = {Frontiers in psychology}, volume = {7}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2016.01308}, pages = {18}, year = {2016}, abstract = {Due to their multifunctionality, tablets offer tremendous advantages for research on handwriting dynamics or for interactive use of learning apps in schools. Further, the widespread use of tablet computers has had a great impact on handwriting in the current generation. But, is it advisable to teach how to write and to assess handwriting in pre- and primary schoolchildren on tablets rather than on paper? Since handwriting is not automatized before the age of 10 years, children's handwriting movements require graphomotor and visual feedback as well as permanent control of movement execution during handwriting. Modifications in writing conditions, for instance the smoother writing surface of a tablet, might influence handwriting performance in general and in particular those of non-automatized beginning writers. In order to investigate how handwriting performance is affected by a difference in friction of the writing surface, we recruited three groups with varying levels of handwriting automaticity: 25 preschoolers, 27 second graders, and 25 adults. We administered three tasks measuring graphomotor abilities, visuomotor abilities, and handwriting performance (only second graders and adults). We evaluated two aspects of handwriting performance: the handwriting quality with a visual score and the handwriting dynamics using online handwriting measures [e.g., writing duration, writing velocity, strokes and number of inversions in velocity (NIV)]. In particular, NIVs which describe the number of velocity peaks during handwriting are directly related to the level of handwriting automaticity. In general, we found differences between writing on paper compared to the tablet. These differences were partly task-dependent. The comparison between tablet and paper revealed a faster writing velocity for all groups and all tasks on the tablet which indicates that all participants—even the experienced writers—were influenced by the lower friction of the tablet surface. Our results for the group-comparison show advancing levels in handwriting automaticity from preschoolers to second graders to adults, which confirms that our method depicts handwriting performance in groups with varying degrees of handwriting automaticity. We conclude that the smoother tablet surface requires additional control of handwriting movements and therefore might present an additional challenge for learners of handwriting.}, language = {en} } @misc{GerthKlassertDolketal.2016, author = {Gerth, Sabrina and Klassert, Annegret and Dolk, Thomas and Fliesser, Michael and Fischer, Martin H. and Nottbusch, Guido and Festman, Julia}, title = {Is Handwriting Performance Affected by the Writing Surface?}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100384}, pages = {18}, year = {2016}, abstract = {Due to their multifunctionality, tablets offer tremendous advantages for research on handwriting dynamics or for interactive use of learning apps in schools. Further, the widespread use of tablet computers has had a great impact on handwriting in the current generation. But, is it advisable to teach how to write and to assess handwriting in pre- and primary schoolchildren on tablets rather than on paper? Since handwriting is not automatized before the age of 10 years, children's handwriting movements require graphomotor and visual feedback as well as permanent control of movement execution during handwriting. Modifications in writing conditions, for instance the smoother writing surface of a tablet, might influence handwriting performance in general and in particular those of non-automatized beginning writers. In order to investigate how handwriting performance is affected by a difference in friction of the writing surface, we recruited three groups with varying levels of handwriting automaticity: 25 preschoolers, 27 second graders, and 25 adults. We administered three tasks measuring graphomotor abilities, visuomotor abilities, and handwriting performance (only second graders and adults). We evaluated two aspects of handwriting performance: the handwriting quality with a visual score and the handwriting dynamics using online handwriting measures [e.g., writing duration, writing velocity, strokes and number of inversions in velocity (NIV)]. In particular, NIVs which describe the number of velocity peaks during handwriting are directly related to the level of handwriting automaticity. In general, we found differences between writing on paper compared to the tablet. These differences were partly task-dependent. The comparison between tablet and paper revealed a faster writing velocity for all groups and all tasks on the tablet which indicates that all participants—even the experienced writers—were influenced by the lower friction of the tablet surface. Our results for the group-comparison show advancing levels in handwriting automaticity from preschoolers to second graders to adults, which confirms that our method depicts handwriting performance in groups with varying degrees of handwriting automaticity. We conclude that the smoother tablet surface requires additional control of handwriting movements and therefore might present an additional challenge for learners of handwriting.}, language = {en} } @phdthesis{Fischer2005, author = {Fischer, Thomas}, title = {Lichtinduzierte Orientierungsprozesse in Azobenzen-Polymeren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7133}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Die Beeinflussung optischer Eigenschaften durch Bestrahlung stellt eine Grundlage f{\"u}r die Herstellung anisotroper optischer Komponenten dar. In d{\"u}nnen Schichten von Azobenzen-Polymeren kann optische Anisotropie durch linear polarisierte Bestrahlung induziert oder modifiziert werden. Ziel der Arbeit war es, wesentliche Struktur-Eigenschafts-Beziehungen zum Prozess der Photoorientierung zu erarbeiten, um so eine Optimierung der Materialien f{\"u}r verschiedene Anwendungen erm{\"o}glichen. In isotropen Schichten fl{\"u}ssigkristalliner und amorpher Azobenzen-Polymeren wird das Ausmaß der induzierten optischen Anisotropie g{\"u}nstig durch eine Donor/Akzeptor-Substitution in 4,4'-Position beeinflusst. Die Induktionsgeschwindigkeit ist in Schichten fl{\"u}ssigkristalliner Polymeren deutlich geringer, jedoch lassen sich h{\"o}here Werte der Doppelbrechung und des Dichroismus erreichen. In Copolymeren bewirkt die Photoorientierung der Azobenzen-Seitengruppen eine kooperative Orientierung von formanisotropen Seitengruppen. Die Mesogenit{\"a}t der nicht-photochromen Seitengruppen erh{\"o}ht das Ausmaß der induzierten optischen Anisotropie. Die Stabilit{\"a}t der induzierten Doppelbrechung und des Dichroismus wird durch diese Gruppen gesteigert. In Schichten fl{\"u}ssigkristalliner Polymeren wird die induzierte optische Anisotropie beim Tempern im Bereich der Mesophasen erheblich verst{\"a}rkt. Dabei reicht ein geringes Maß an induzierter Anisotropie aus, um Doppelbrechungs- und Dichroismuswerte zu erzielen, wie sie f{\"u}r LC-Dom{\"a}nen typisch sind. In orientierten Schichten von Azobenzen-Polymeren wird das Resultat der linear polarisierten Bestrahlung durch die St{\"a}rke der anisotropen Wechselwirkungen in den fl{\"u}ssigkristallinen Dom{\"a}nen oder den LB-Multilayern bestimmt. Eine lichtinduzierte Reorientierung kann nur erreicht werden, wenn diese Wechselwirkungen {\"u}berwunden werden k{\"o}nnen. Erfolgt eine Photoreorientierung in den orientierten Polymerschichten, werden in Copolymeren formanisotrope Seitengruppen ebenfalls kooperativ reorientiert. Eine vorgelagerte UV-Bestrahlung kann durch Erzeugung eines hohen Anteils an nicht-mesogenen Z-Isomeren die anisotropen Wechselwirkungen stark schw{\"a}chen und so die Seitengruppen entkoppeln. Aus diesem Zustand erfolgt die Photoreorientierung mit einer der Photoorientierung in isotropen Schichten vergleichbaren Effizienz. Die erarbeiteten Struktur-Eigenschafts-Beziehungen liefern einen Beitrag zur Optimierung derartiger Materialien f{\"u}r Anwendungen in den Bereichen optischer Funktionsschichten, holographischer Datenspeicherung oder der Generierung von Oberfl{\"a}chenreliefgittern.}, subject = {Fl{\"u}ssigkristalline Polymere}, language = {de} } @article{WolfHolzmeierWagneretal.2017, author = {Wolf, Thomas J. A. and Holzmeier, Fabian and Wagner, Isabella and Berrah, Nora and Bostedt, Christoph and Bozek, John and Bucksbaum, Phil and Coffee, Ryan and Cryan, James and Farrell, Joe and Feifel, Raimund and Martinez, Todd J. and McFarland, Brian and Mucke, Melanie and Nandi, Saikat and Tarantelli, Francesco and Fischer, Ingo and G{\"u}hr, Markus}, title = {Observing Femtosecond Fragmentation Using Ultrafast X-ray-Induced Auger Spectra}, series = {Applied sciences}, volume = {7}, journal = {Applied sciences}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app7070681}, pages = {11}, year = {2017}, abstract = {Molecules often fragment after photoionization in the gas phase. Usually, this process can only be investigated spectroscopically as long as there exists electron correlation between the photofragments. Important parameters, like their kinetic energy after separation, cannot be investigated. We are reporting on a femtosecond time-resolved Auger electron spectroscopy study concerning the photofragmentation dynamics of thymine. We observe the appearance of clearly distinguishable signatures from thymines neutral photofragment isocyanic acid. Furthermore, we observe a time-dependent shift of its spectrum, which we can attribute to the influence of the charged fragment on the Auger electron. This allows us to map our time-dependent dataset onto the fragmentation coordinate. The time dependence of the shift supports efficient transformation of the excess energy gained from photoionization into kinetic energy of the fragments. Our method is broadly applicable to the investigation of photofragmentation processes.}, language = {en} } @article{HolzmeierWolfGiengeretal.2018, author = {Holzmeier, Fabian and Wolf, Thomas J. A. and Gienger, Christian and Wagner, Isabella and Bozek, J. and Nandi, S. and Nicolas, C. and Fischer, Ingo and G{\"u}hr, Markus and Fink, Reinhold F.}, title = {Normal and resonant Auger spectroscopy of isocyanic acid, HNCO}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {149}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {3}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5030621}, pages = {13}, year = {2018}, abstract = {In this paper, we investigate HNCO by resonant and nonresonant Auger electron spectroscopy at the K-edges of carbon, nitrogen, and oxygen, employing soft X-ray synchrotron radiation. In comparison with the isosteric but linear CO2 molecule, spectra of the bent HNCO molecule are similar but more complex due to its reduced symmetry, wherein the degeneracy of the π-orbitals is lifted. Resonant Auger electron spectra are presented at different photon energies over the first core-excited 1s → 10a′ resonance. All Auger electron spectra are assigned based on ab initio configuration interaction computations combined with the one-center approximation for Auger intensities and moment theory to consider vibrational motion. The calculated spectra were scaled by a newly introduced energy scaling factor, and generally, good agreement is found between experiment and theory for normal as well as resonant Auger electron spectra. A comparison of resonant Auger spectra with nonresonant Auger structures shows a slight broadening as well as a shift of the former spectra between -8 and -9 eV due to the spectating electron. Since HNCO is a small molecule and contains the four most abundant atoms of organic molecules, the reported Auger electron decay spectra will provide a benchmark for further theoretical approaches in the computation of core electron spectra.}, language = {en} } @misc{HischeLarhlimiSchwarzetal.2012, author = {Hische, Manuela and Larhlimi, Abdelhalim and Schwarz, Franziska and Fischer-Rosinsk{\´y}, Antje and Bobbert, Thomas and Assmann, Anke and Catchpole, Gareth S. and Pfeiffer, Andreas F. H. and Willmitzer, Lothar and Selbig, Joachim and Spranger, Joachim}, title = {A distinct metabolic signature predictsdevelopment of fasting plasma glucose}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {850}, issn = {1866-8372}, doi = {10.25932/publishup-42740}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427400}, pages = {12}, year = {2012}, abstract = {Background High blood glucose and diabetes are amongst the conditions causing the greatest losses in years of healthy life worldwide. Therefore, numerous studies aim to identify reliable risk markers for development of impaired glucose metabolism and type 2 diabetes. However, the molecular basis of impaired glucose metabolism is so far insufficiently understood. The development of so called 'omics' approaches in the recent years promises to identify molecular markers and to further understand the molecular basis of impaired glucose metabolism and type 2 diabetes. Although univariate statistical approaches are often applied, we demonstrate here that the application of multivariate statistical approaches is highly recommended to fully capture the complexity of data gained using high-throughput methods. Methods We took blood plasma samples from 172 subjects who participated in the prospective Metabolic Syndrome Berlin Potsdam follow-up study (MESY-BEPO Follow-up). We analysed these samples using Gas Chromatography coupled with Mass Spectrometry (GC-MS), and measured 286 metabolites. Furthermore, fasting glucose levels were measured using standard methods at baseline, and after an average of six years. We did correlation analysis and built linear regression models as well as Random Forest regression models to identify metabolites that predict the development of fasting glucose in our cohort. Results We found a metabolic pattern consisting of nine metabolites that predicted fasting glucose development with an accuracy of 0.47 in tenfold cross-validation using Random Forest regression. We also showed that adding established risk markers did not improve the model accuracy. However, external validation is eventually desirable. Although not all metabolites belonging to the final pattern are identified yet, the pattern directs attention to amino acid metabolism, energy metabolism and redox homeostasis. Conclusions We demonstrate that metabolites identified using a high-throughput method (GC-MS) perform well in predicting the development of fasting plasma glucose over several years. Notably, not single, but a complex pattern of metabolites propels the prediction and therefore reflects the complexity of the underlying molecular mechanisms. This result could only be captured by application of multivariate statistical approaches. Therefore, we highly recommend the usage of statistical methods that seize the complexity of the information given by high-throughput methods.}, language = {en} }