@book{HermannsBoehmeMeyeringetal.2023, author = {Hermanns, Jolanda and B{\"o}hme, Katrin and Meyering, Meike and Fuchs, Isabelle and Wagner, Simon and Krauskopf, Karsten and Knigge, Michel and Rother, Stefanie and Tosch, Frank and Wendland, Mirko and Wulff, Peter and Mientus, Lukas and Nowak, Anna and Borowski, Andreas and Baer, Ella and Bosch, Jannis and Wilbert, J{\"u}rgen and Br{\"a}sel, Tim and Fenn, Monika and Kortenkamp, Ulrich and Kuzle, Ana and Reitz-Koncebovski, Karen and Burg, Paula and Lampart, Fabian and Leubner, Martin and Freitag-Hild, Britta and Bitmann, Anna and Reinhardt, Susanne and Roos, Jana and Hußner, Isabell and B{\"o}rner, Dustin and Lazarides, Rebecca and Glowinski, Ingrid and Autenrieth, Marijke and Radke, Thea and Ehlert, Antje and Menke, Anne and Haupenthal, Anna and Schramm, Satyam Antonio and Kruse, Julia and K{\"o}rner, Dorothea and Fischer, Jakob Thomas and Kayser, Daniela Niesta}, title = {PSI-Potsdam}, series = {Potsdamer Beitr{\"a}ge f{\"u}r Lehrkr{\"a}ftebildung und Bildungsforschung}, journal = {Potsdamer Beitr{\"a}ge f{\"u}r Lehrkr{\"a}ftebildung und Bildungsforschung}, number = {3}, editor = {Hermanns, Jolanda}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-568-2}, issn = {2626-3556}, doi = {10.25932/publishup-60187}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-601875}, publisher = {Universit{\"a}t Potsdam}, pages = {393}, year = {2023}, abstract = {An der Universit{\"a}t Potsdam wird seit 2015 im Rahmen der „Qualit{\"a}tsoffensive Lehrerbildung" das Projekt „Professionalisierung - Schulpraktische Studien - Inklusion" (PSI-Potsdam) durchgef{\"u}hrt und am Zentrum f{\"u}r Lehrerbildung und Bildungsforschung (ZeLB) koordiniert. Zur ersten Projektf{\"o}rderphase (2015-2018) erschien der Band „PSI-Potsdam - Ergebnisbericht zu den Aktivit{\"a}ten im Rahmen der Qualit{\"a}tsoffensive Lehrerbildung (2015-2018)" zum Auftakt der Reihe „Potsdamer Beitr{\"a}ge zur Lehrerbildung und Bildungsforschung". Der vorliegende Band aus der gleichen Reihe gibt in den Kapiteln „Erhebungen", „Lehrkonzepte" und „Vernetzungen" einen {\"U}berblick {\"u}ber alle Teilprojekte der zweiten Projektf{\"o}rderphase (2019-2023). Wissenschaftler:innen aus verschiedenen Fachdidaktiken, Fachwissenschaften sowie aus den Bildungswissenschaften und der Inklusionsp{\"a}dagogik haben im Rahmen des Projektes kooperiert. Sowohl praxisnahe Forschung als auch die Entwicklung neuer Lehrkonzepte sowie Strategien zur Vernetzung innerhalb der Lehrkr{\"a}ftebildung stehen im Fokus dieses Bandes. Die Praxisphasen, die im Rahmen des „Potsdamer Modells der Lehrerbildung" eine zentrale Rolle spielen, wurden in einer großen Studie {\"u}ber alle Praxisphasen untersucht. Der Band gibt interessante Einblicke in die Ergebnisse der Teilprojekte und Anregungen sowohl f{\"u}r die eigene Forschung als auch f{\"u}r Entwicklungsarbeit wie zum Beispiel die Entwicklung neuer Lehrkonzepte. Herausgegeben wird dieser Band von PD Dr. Jolanda Hermanns (Gesamtkoordinatorin PSI-Potsdam und Chemiedidaktikerin).}, language = {de} } @article{KhattariRuschelWenetal.2005, author = {Khattari, Z. and Ruschel, Y. and Wen, H. Z. and Fischer, Anna and Fischer, T. M.}, title = {Compactification of a myelin mimetic Langmuir monolayer upon adsorption and unfolding of myelin basic protein}, issn = {1520-6106}, year = {2005}, abstract = {The surface shear viscosity of a myelin mimetic Langmuir monolayer is investigated upon adsorption of myelin basic protein (MBP). We measure an increase of the surface shear viscosity at picomolar concentrations of the protein, suggesting that the globular conformation of MBP changes upon adsorption at the monolayer. The conformational change enables hydrodynamic interactions of the proteins, with a typical separation of hundreds of nanometers. This unfolding is essential for the compactification of the myelin sheath, serving an enhanced saltatory signal transduction in vertebrates. The viscometry used extends the sensitivity of standard surface viscometers toward lower viscosities}, language = {en} } @incollection{FischerMatheja2016, author = {Fischer, Martin H. and Matheja, Anna}, title = {Grenz{\"u}berschreitungen in der Kognition}, series = {Grenzen im Fokus der Wissenschaften}, booktitle = {Grenzen im Fokus der Wissenschaften}, publisher = {Trafo}, address = {Berlin}, publisher = {Universit{\"a}t Potsdam}, pages = {197 -- 212}, year = {2016}, language = {de} } @book{KloseKlostermannEngelmannetal.2006, author = {Klose, Dagmar and Klostermann, Anke and Engelmann, Anna-Maria and Jeltsch, Gesche and Dowall, Kathrin and Meyer, Georg and Glados, Andrea and Fischer, Raul and Hoffmann, Katrin and Kaiser, Christoph and Ladewig, Marco and Skouras, Andreas and Wienert, Christian and Wilkening, Gregor and Klaudius, Mathias and Goldbeck, Johanna and Duch, Sven and Werfel, Claudia and Viebig, Wenke and Neumann, Katharina and Dammnik, Sabine}, title = {Antike so fern und doch so nah}, editor = {Klose, Dagmar}, isbn = {978-3-939469-37-7}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-11179}, publisher = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Historisches Denken entwickeln am Gegenstand der altorientalischen,griechischen und r{\"o}mischen Antike, das ist Anliegen der didaktischen Handreichung f{\"u}r die gymnasiale Oberstufe. Didaktisch-methodische {\"U}berlegungen, Sachinformationen und ein handlungsorientierter Materialteil bieten f{\"u}r Lehrer und Sch{\"u}ler ein ideenreiches Angebot zur Auswahl f{\"u}r einen interessegeleiteten Geschichtsunterricht.}, language = {de} } @article{NeumannKielbRustametal.2017, author = {Neumann, Bettina and Kielb, Patrycja and Rustam, Lina and Fischer, Anna and Weidinger, Inez M. and Wollenberger, Ulla}, title = {Bioelectrocatalytic Reduction of Hydrogen Peroxide by Microperoxidase-11 Immobilized on Mesoporous Antimony-Doped Tin Oxide}, series = {ChemElectrChem}, volume = {4}, journal = {ChemElectrChem}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2196-0216}, doi = {10.1002/celc.201600776}, pages = {913 -- 919}, year = {2017}, abstract = {The heme-undecapeptide microperoxidase-11 (MP-11) was immobilized on mesoporous antimony-doped tin oxide (ATO) thin-film electrodes modified with the positively charged binding promotor polydiallyldimethylammonium chloride. Surface concentrations of MP-11 of 1.5 nmol cm(-2) were sufficiently high to enable spectroelectrochemical analyses. UV/Vis spectroscopy and resonance Raman spectroscopy revealed that immobilized MP-11 adopts a six-coordinated low-spin conformation, as in solution in the presence of a polycation. Cathodic reduction of hydrogen peroxide at potentials close to +500mV versus Ag/AgCl indicates that the reaction proceeds via a Compound I-type like intermediate, analogous to natural peroxidases, and confirms mesoporous ATO as a suitable host material for adsorbing the heme-peptide in its native state. A hydrogen peroxide sensor is proposed by using the bioelectrocatalytic properties of the MP-11-modified ATO.}, language = {en} } @misc{HetenyiMolinariClintonetal.2018, author = {Hetenyi, Gyorgy and Molinari, Irene and Clinton, John and Bokelmann, Gotz and Bondar, Istvan and Crawford, Wayne C. and Dessa, Jean-Xavier and Doubre, Cecile and Friederich, Wolfgang and Fuchs, Florian and Giardini, Domenico and Graczer, Zoltan and Handy, Mark R. and Herak, Marijan and Jia, Yan and Kissling, Edi and Kopp, Heidrun and Korn, Michael and Margheriti, Lucia and Meier, Thomas and Mucciarelli, Marco and Paul, Anne and Pesaresi, Damiano and Piromallo, Claudia and Plenefisch, Thomas and Plomerova, Jaroslava and Ritter, Joachim and Rumpker, Georg and Sipka, Vesna and Spallarossa, Daniele and Thomas, Christine and Tilmann, Frederik and Wassermann, Joachim and Weber, Michael and Weber, Zoltan and Wesztergom, Viktor and Zivcic, Mladen and Abreu, Rafael and Allegretti, Ivo and Apoloner, Maria-Theresia and Aubert, Coralie and Besancon, Simon and de Berc, Maxime Bes and Brunel, Didier and Capello, Marco and Carman, Martina and Cavaliere, Adriano and Cheze, Jerome and Chiarabba, Claudio and Cougoulat, Glenn and Cristiano, Luigia and Czifra, Tibor and Danesi, Stefania and Daniel, Romuald and Dannowski, Anke and Dasovic, Iva and Deschamps, Anne and Egdorf, Sven and Fiket, Tomislav and Fischer, Kasper and Funke, Sigward and Govoni, Aladino and Groschl, Gidera and Heimers, Stefan and Heit, Ben and Herak, Davorka and Huber, Johann and Jaric, Dejan and Jedlicka, Petr and Jund, Helene and Klingen, Stefan and Klotz, Bernhard and Kolinsky, Petr and Kotek, Josef and Kuhne, Lothar and Kuk, Kreso and Lange, Dietrich and Loos, Jurgen and Lovati, Sara and Malengros, Deny and Maron, Christophe and Martin, Xavier and Massa, Marco and Mazzarini, Francesco and Metral, Laurent and Moretti, Milena and Munzarova, Helena and Nardi, Anna and Pahor, Jurij and Pequegnat, Catherine and Petersen, Florian and Piccinini, Davide and Pondrelli, Silvia and Prevolnik, Snjezan and Racine, Roman and Regnier, Marc and Reiss, Miriam and Salimbeni, Simone and Santulin, Marco and Scherer, Werner and Schippkus, Sven and Schulte-Kortnack, Detlef and Solarino, Stefano and Spieker, Kathrin and Stipcevic, Josip and Strollo, Angelo and Sule, Balint and Szanyi, Gyongyver and Szucs, Eszter and Thorwart, Martin and Ueding, Stefan and Vallocchia, Massimiliano and Vecsey, Ludek and Voigt, Rene and Weidle, Christian and Weyland, Gauthier and Wiemer, Stefan and Wolf, Felix and Wolyniec, David and Zieke, Thomas}, title = {The AlpArray seismic network}, series = {Surveys in Geophysics}, volume = {39}, journal = {Surveys in Geophysics}, number = {5}, publisher = {Springer}, address = {Dordrecht}, organization = {ETHZ SED Elect Lab AlpArray Seismic Network Team AlpArray OBS Cruise Crew AlpArray Working Grp}, issn = {0169-3298}, doi = {10.1007/s10712-018-9472-4}, pages = {1009 -- 1033}, year = {2018}, abstract = {The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.}, language = {en} } @article{GuietGoebelKlinganetal.2015, author = {Guiet, Amandine and Goebel, Caren and Klingan, Katharina and Lublow, Michael and Reier, Tobias and Vainio, Ulla and Kraehnert, Ralph and Schlaad, Helmut and Strasser, Peter and Zaharieva, Ivelina and Dau, Holger and Driess, Matthias and Polte, Joerg and Fischer, Anna}, title = {Hydrophobic Nanoreactor Soft-Templating: A Supramolecular Approach to Yolk@Shell Materials}, series = {Advanced functional materials}, volume = {25}, journal = {Advanced functional materials}, number = {39}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201502388}, pages = {6228 -- 6240}, year = {2015}, abstract = {Due to their unique morphology-related properties, yolk@shell materials are promising materials for catalysis, drug delivery, energy conversion, and storage. Despite their proven potential, large-scale applications are however limited due to demanding synthesis protocols. Overcoming these limitations, a simple soft-templated approach for the one-pot synthesis of yolk@shell nanocomposites and in particular of multicore metal nanoparticle@metal oxide nanostructures (M-NP@MOx) is introduced. The approach here, as demonstrated for Au-NP@ITOTR (ITOTR standing for tin-rich ITO), relies on polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) inverse micelles as two compartment nanoreactor templates. While the hydrophilic P4VP core incorporates the hydrophilic metal precursor, the hydrophobic PS corona takes up the hydrophobic metal oxide precursor. As a result, interfacial reactions between the precursors can take place, leading to the formation of yolk@shell structures in solution. Once calcined these micelles yield Au-NP@ITOTR nanostructures, composed of multiple 6 nm sized Au NPs strongly anchored onto the inner surface of porous 35 nm sized ITOTR hollow spheres. Although of multicore nature, only limited sintering of the metal nanoparticles is observed at high temperatures (700 degrees C). In addition, the as-synthesized yolk@shell structures exhibit high and stable activity toward CO electrooxidation, thus demonstrating the applicability of our approach for the design of functional yolk@shell nanocatalysts.}, language = {en} } @article{GuietUnmuessigGoebeletal.2016, author = {Guiet, Amandine and Unm{\"u}ssig, Tobias and G{\"o}bel, Caren and Vainio, Ulla and Wollgarten, Markus and Driess, Matthias and Schlaad, Helmut and Polte, J{\"o}rg and Fischer, Anna}, title = {Yolk@Shell Nanoarchitectures with Bimetallic Nanocores - Synthesis and Electrocatalytic Applications}, series = {Earth \& planetary science letters}, volume = {8}, journal = {Earth \& planetary science letters}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.6b06595}, pages = {28019 -- 28029}, year = {2016}, language = {en} } @phdthesis{Fischer2008, author = {Fischer, Anna}, title = {"Reactive hard templating" : from carbon nitrides to metal nitrides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-19777}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Nanostructured inorganic materials are routinely synthesized by the use of templates. Depending on the synthesis conditions of the product material, either "soft" or "hard" templates can be applied. For sol-gel processes, usually "soft" templating techniques are employed, while "hard" templates are used for high temperature synthesis pathways. In classical templating approaches, the template has the unique role of structure directing agent, in the sense that it is not participating to the chemical formation of the resulting material. This work investigates a new templating pathway to nanostructured materials, where the template is also a reagent in the formation of the final material. This concept is described as "reactive templating" and opens a synthetic path toward materials which cannot be synthesised on a nanometre scale by classical templating approaches. Metal nitrides are such kind of materials. They are usually produced by the conversion of metals or metal oxides in ammonia flow at high temperature (T > 1000°C), which make the application of classical templating techniques difficult. Graphitic carbon nitride, g-C3N4, despite its fundamental and theoretical importance, is probably one of the most promising materials to complement carbon in material science and many efforts are put in the synthesis of this material. A simple polyaddition/elimination reaction path at high temperature (T = 550°C) allows the polymerisation of cyanamide toward graphitic carbon nitride solids. By hard templating, using nanostructured silica or aluminium oxide as nanotemplates, a variety of nanostructured graphitic carbon nitrides such as nanorods, nanotubes, meso- and macroporous powders could be obtained by nanocasting or nanocoating. Due to the special semi-conducting properties of the graphitic carbon nitride matrix, the nanostructured graphitic carbon nitrides show unexpected catalytic activity for the activation of benzene in Friedel-Crafts type reactions, making this material an interesting metal free catalyst. Furthermore, due to the chemical composition of g-C3N4 and the fact that it is totally decomposed at temperatures between 600°C and 800°C even under inert atmosphere, g-C3N4 was shown to be a good nitrogen donor for the synthesis of early transition metal nitrides at high temperatures. Thus using the nanostructured carbon nitrides as "reactive templates" or "nanoreactors", various metal nitride nanostructures, such as nanoparticles and porous frameworks could be obtained at high temperature. In this approach the carbon nitride nanostructure played both the role of the nitrogen source and of the exotemplate, imprinting its size and shape to the resulting metal nitride nanostructure.}, language = {en} } @article{FrascaMilanGuietetal.2013, author = {Frasca, Stefano and Milan, Anabel Molero and Guiet, Amandine and Goebel, Caren and Perez-Caballero, Fernando and Stiba, Konstanze and Leimk{\"u}hler, Silke and Fischer, Anna and Wollenberger, Ursula}, title = {Bioelectrocatalysis at mesoporous antimony doped tin oxide electrodes-Electrochemical characterization and direct enzyme communication}, series = {ELECTROCHIMICA ACTA}, volume = {110}, journal = {ELECTROCHIMICA ACTA}, number = {2}, publisher = {PERGAMON-ELSEVIER SCIENCE LTD}, address = {OXFORD}, issn = {0013-4686}, doi = {10.1016/j.electacta.2013.03.144}, pages = {172 -- 180}, year = {2013}, abstract = {In this paper we report immobilization and bioelectrocatalysis of human sulfite oxidase (hSO) on nanostructured antimony doped tin oxide (ATO) thin film electrodes. Two types of ATO thin film electrodes were prepared via evaporation induced self-assembly of ATO nanoparticle sols. The use of a porogen results in different porosity and film thickness. Nevertheless both electrode types reveal similar quasi reversible electrochemical behavior for positive and negatively charged small mediators. Facile and durable immobilization of catalytically active enzyme in a direct electron transfer configuration was achieved without further chemical modification of the ATO surfaces. Interestingly, the binding of hSO onto the ATO surface seems to be not only of electrostatic nature, but also originates from a strong interaction between the histidine-tag of the enzyme and the supporting material. This is suggested from stable sulfite dependent bioelectrocatalytic signals at high ionic strength and imidazole desorption experiments. As such, ATO appears as a promising conductive platform for the immobilization of complex enzymes and their application in bioelectrocatalysis. (C) 2013 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SivanesanKalaivaniFischeretal.2012, author = {Sivanesan, Arumugam and Kalaivani, Govindasamy and Fischer, Anna and Stiba, Konstanze and Leimk{\"u}hler, Silke and Weidinger, Inez M.}, title = {Complementary surface-enhanced resonance raman Spectroscopic Biodetection of mixed protein solutions by Chitosan- and Silica-Coated Plasmon-Tuned Silver Nanoparticles}, series = {Analytical chemistry}, volume = {84}, journal = {Analytical chemistry}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {0003-2700}, doi = {10.1021/ac301001a}, pages = {5759 -- 5764}, year = {2012}, abstract = {Silver nanoparticles with identical plasmonic properties but different surface functionalities are synthesized and tested as chemically selective surface-enhanced resonance Raman (SERR) amplifiers in a two-component protein solution. The surface plasmon resonances of the particles are tuned to 413 nm to match the molecular resonance of protein heme cofactors. Biocompatible functionalization of the nanoparticles with a thin film of chitosan yields selective SERR enhancement of the anionic protein cytochrome b(5), whereas functionalization with SiO2 amplifies only the spectra of the cationic protein cytochrome c. As a result, subsequent addition of the two differently functionalized particles yields complementary information on the same mixed protein sample solution. Finally, the applicability of chitosan-coated Ag nanoparticles for protein separation was tested by in situ resonance Raman spectroscopy.}, language = {en} } @article{YarmanNagelGajovicEichelmannetal.2011, author = {Yarman, Aysu and Nagel, Thomas and Gajovic-Eichelmann, Nenad and Fischer, Anna and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Bioelectrocatalysis by Microperoxidase-11 in a Multilayer Architecture of Chitosan Embedded Gold Nanoparticles}, series = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, volume = {23}, journal = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, number = {3}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1040-0397}, doi = {10.1002/elan.201000535}, pages = {611 -- 618}, year = {2011}, abstract = {We report on the redox behaviour of the microperoxidase-11 (MP-11) which has been electrostatically immobilized in a matrix of chitosan-embedded gold nanoparticles on the surface of a glassy carbon electrode. MP-11 contains a covalently bound heme c as the redox active group that exchanges electrons with the electrode via the gold nanoparticles. Electroactive surface concentration of MP-11 at high scan rate is between 350+/-50 pmol cm(-2), which reflects a multilayer process. The formal potential (E degrees') of MP-11 in the gold nanoparticles-chitosan film was estimated to be -(267.7+/-2.9) mV at pH 7.0. The heterogeneous electron transfer rate constant (k(s)) starts at 1.21 s(-1) and levels off at 6.45 s(-1) in the scan rate range from 0.1 to 2.0 V s(-1). Oxidation and reduction of MP-11 by hydrogen peroxide and superoxide, respectively have been coupled to the direct electron transfer of MP-11.}, language = {en} } @article{Fischer2011, author = {Fischer, Anna S.}, title = {Horomedon und Laokoon}, series = {Texturen - Identit{\"a}ten - Theorien : Ergebnisse des Arbeitstreffens des Jungen Forums Slavistische Literaturwissenschaft in Trier 2010}, journal = {Texturen - Identit{\"a}ten - Theorien : Ergebnisse des Arbeitstreffens des Jungen Forums Slavistische Literaturwissenschaft in Trier 2010}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-58976}, pages = {425 -- 441}, year = {2011}, abstract = {- Horomedon - Laokoon - Raum und Zeit - Plastische K{\"u}nste - Fazit}, language = {de} } @misc{BorghiShakiFischer2022, author = {Borghi, Anna M. and Shaki, Samuel and Fischer, Martin H.}, title = {Concrete constraints on abstract concepts-editorial}, series = {Psychological research : an international journal of perception, attention, memory, and action}, volume = {86}, journal = {Psychological research : an international journal of perception, attention, memory, and action}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-0727}, doi = {10.1007/s00426-022-01685-9}, pages = {2366 -- 2369}, year = {2022}, abstract = {This special issue, "Concrete constraints of abstract concepts", addresses the role of concrete determinants, both external and internal to the human body, in acquisition, processing and use of abstract concepts while at the same time presenting to the readers an overview of methods used to assess their representation.}, language = {en} } @article{BorghiShakiFischer2022, author = {Borghi, Anna M. and Shaki, Samuel and Fischer, Martin H.}, title = {Abstract concepts: external influences, internal constraints, and methodological issues}, series = {Psychological research : an international journal of perception, attention, memory, and action}, volume = {86}, journal = {Psychological research : an international journal of perception, attention, memory, and action}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-0727}, doi = {10.1007/s00426-022-01698-4}, pages = {2370 -- 2388}, year = {2022}, abstract = {There is a longstanding and widely held misconception about the relative remoteness of abstract concepts from concrete experiences. This review examines the current evidence for external influences and internal constraints on the processing, representation, and use of abstract concepts, like truth, friendship, and number. We highlight the theoretical benefit of distinguishing between grounded and embodied cognition and then ask which roles do perception, action, language, and social interaction play in acquiring, representing and using abstract concepts. By reviewing several studies, we show that they are, against the accepted definition, not detached from perception and action. Focussing on magnitude-related concepts, we also discuss evidence for cultural influences on abstract knowledge and explore how internal processes such as inner speech, metacognition, and inner bodily signals (interoception) influence the acquisition and retrieval of abstract knowledge. Finally, we discuss some methodological developments. Specifically, we focus on the importance of studies that investigate the time course of conceptual processing and we argue that, because of the paramount role of sociality for abstract concepts, new methods are necessary to study concepts in interactive situations. We conclude that bodily, linguistic, and social constraints provide important theoretical limitations for our theories of conceptual knowledge.}, language = {en} }