@article{AliuArcherAuneetal.2015, author = {Aliu, E. and Archer, A. and Aune, T. and Barnacka, Anna and Behera, B. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, Wei and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hakansson, Nils and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Kumar, S. and Lang, M. J. and Madhavan, A. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Nieto, Daniel and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, Martin and Popkow, A. and Prokoph, H. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Rajotte, J. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Wakely, S. P. and Weinstein, A. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Veritas observations of the BL LAC OBJECT PG 1553+113}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {799}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/799/1/7}, pages = {9}, year = {2015}, abstract = {We present results from VERITAS observations of the BL Lac object PG 1553+113 spanning the years 2010, 2011, and 2012. The time-averaged spectrum, measured between 160 and 560 GeV, is well described by a power law with a spectral index of 4.33 +/- 0.09. The time-averaged integral flux above 200 GeV measured for this period was (1.69 +/- 0.06) x 10(-11) photons cm(-2) s(-1), corresponding to 6.9\% of the Crab Nebula flux. We also present the combined gamma-ray spectrum from the Fermi Large Area Telescope and VERITAS covering an energy range from 100 MeV to 560 GeV. The data are well fit by a power law with an exponential cutoff at 101.9 +/- 3.2 GeV. The origin of the cutoff could be intrinsic to PG 1553+113 or be due to the gamma-ray opacity of our universe through pair production off the extragalactic background light (EBL). Given lower limits to the redshift of z > 0.395 based on optical/UV observations of PG 1553+113, the cutoff would be dominated by EBL absorption. Conversely, the small statistical uncertainties of the VERITAS energy spectrum have allowed us to provide a robust upper limit on the redshift of PG 1553+113 of z <= 0.62. A strongly elevated mean flux of (2.50 +/- 0.14) x10(-11) photons cm(-2) s(-1) (10.3\% of the Crab Nebula flux) was observed during 2012, with the daily flux reaching as high as (4.44 +/- 0.71) x10(-11) photons cm(-2) s(-1) (18.3\% of the Crab Nebula flux) on MJD 56048. The light curve measured during the 2012 observing season is marginally inconsistent with a steady flux, giving a chi(2) probability for a steady flux of 0.03\%.}, language = {en} } @article{ArchambaultArlenAuneetal.2013, author = {Archambault, S. and Arlen, T. and Aune, T. and Behera, B. and Beilicke, M. and Benbow, W. and Bird, R. and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cesarini, A. and Ciupik, L. and Connolly, M. P. and Cui, W. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Kumar, S. and Lang, M. J. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Millis, J. and Moriarty, P. and Mukherjee, R. and de Bhroithe, A. O'Faolain and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, Martin and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Saxon, D. B. and Sembroski, G. H. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Theiling, M. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B. and Boettcher, Markus and Fegan, S. J. and Fortin, P. and Halpern, J. P. and Kovalev, Y. Y. and Lister, M. L. and Liu, J. and Pushkarev, A. B. and Smith, P. S.}, title = {Discovery of a new tev Gamma-Ray source - VER J0521+211}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {776}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/776/2/69}, pages = {10}, year = {2013}, abstract = {We report the detection of a new TeV gamma-ray source, VER J0521+211, based on observations made with the VERITAS imaging atmospheric Cherenkov Telescope Array. These observations were motivated by the discovery of a cluster of >30 GeV photons in the first year of Fermi Large Area Telescope observations. VER J0521+211 is relatively bright at TeV energies, with a mean photon flux of (1.93 +/- 0.13(stat) +/- 0.78(sys)) x 10(-11) cm(-2) s(-1) above 0.2 TeV during the period of the VERITAS observations. The source is strongly variable on a daily timescale across all wavebands, from optical to TeV, with a peak flux corresponding to similar to 0.3 times the steady Crab Nebula flux at TeV energies. Follow-up observations in the optical and X-ray bands classify the newly discovered TeV source as a BL Lac-type blazar with uncertain redshift, although recent measurements suggest z = 0.108. VER J0521+211 exhibits all the defining properties of blazars in radio, optical, X-ray, and gamma-ray wavelengths.}, language = {en} } @article{AliuAuneBeheraetal.2014, author = {Aliu, E. and Aune, T. and Behera, B. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, W. and Dumm, J. and Dwarkadas, Vikram V. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gillanders, G. H. and Gotthelf, E. V. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kargaltsev, O. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krennrich, F. and Lang, M. J. and Madhavan, A. S. and Maier, G. and McArthur, S. and McCann, A. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Pandel, D. and Park, N. and Pohl, Martin and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Rajotte, J. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Roberts, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weinstein, A. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Spatially resolving the very high energy emission from MRGO J2019+37 wih veritas}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {788}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/788/1/78}, pages = {10}, year = {2014}, abstract = {We present very high energy (VHE) imaging of MGRO J2019+37 obtained with the VERITAS observatory. The bright extended (similar to 2 degrees) unidentified Milagro source is located toward the rich star formation region Cygnus-X. MGRO J2019+37 is resolved into two VERITAS sources. The faint, point-like source VER J2016+371 overlaps CTB 87, a filled-center remnant (SNR) with no evidence of a supernova remnant shell at the present time. Its spectrum is well fit in the 0.65-10 TeV energy range by a power-law model with photon index 2.3 +/- 0.4. VER J2019+378 is a bright extended (similar to 1 degrees) source that likely accounts for the bulk of the Milagro emission and is notably coincident with PSR J2021+3651 and the star formation region Sh 2-104. Its spectrum in the range 1-30 TeV is well fit with a power-law model of photon index 1.75 +/- 0.3, among the hardest values measured in the VHE band, comparable to that observed near Vela-X. We explore the unusual spectrum and morphology in the radio and X-ray bands to constrain possible emission mechanisms for this source.}, language = {en} } @article{ArchambaultArcherBenbowetal.2017, author = {Archambault, S. and Archer, A. and Benbow, W. and Bird, Ralph and Bourbeau, E. and Bouvier, A. and Buchovecky, M. and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Ciupik, L. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Hutten, M. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Kieda, D. and Krause, M. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Trepanier, S. and Wakely, S. P. and Weinstein, A. and Wilcox, P. and Williams, D. A. and Zitzer, B.}, title = {Gamma-ray observations under bright moonlight with VERITAS}, series = {Astroparticle physics}, volume = {91}, journal = {Astroparticle physics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-6505}, doi = {10.1016/j.astropartphys.2017.03.001}, pages = {34 -- 43}, year = {2017}, abstract = {Imaging atmospheric Cherenkov telescopes (IACTs) are equipped with sensitive photomultiplier tube (PMT) cameras. Exposure to high levels of background illumination degrades the efficiency of and potentially destroys these photo-detectors over time, so IACTs cannot be operated in the same configuration in the presence of bright moonlight as under dark skies. Since September 2012, observations have been carried out with the VERITAS IACTs under bright moonlight (defined as about three times the night-sky-background (NSB) of a dark extragalactic field, typically occurring when Moon illumination > 35\%) in two observing modes, firstly by reducing the voltage applied to the PMTs and, secondly, with the addition of ultra-violet (UV) bandpass filters to the cameras. This has allowed observations at up to about 30 times previous NSB levels (around 80\% Moon illumination), resulting in 30\% more observing time between the two modes over the course of a year. These additional observations have already allowed for the detection of a flare from the 1ES 1727 + 502 and for an observing program targeting a measurement of the cosmic-ray positron fraction. We provide details of these new observing modes and their performance relative to the standard VERITAS observations. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{AliuAuneBarnackaetal.2014, author = {Aliu, E. and Aune, T. and Barnacka, Anna and Beilicke, M. and Benbow, W. and Berger, K. and Biteau, Jonathan and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connaughton, V. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hakansson, Nils and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Madhavan, A. S. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pohl, Martin and Popkow, A. and Prokoph, H. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Rajotte, J. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and McEnery, J. E. and Perkins, J. S. and Veres, P. and Zhu, S.}, title = {Constraints on very high energy emission from GRB 130427A}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {795}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.1088/2041-8205/795/1/L3}, pages = {6}, year = {2014}, abstract = {Prompt emission from the very fluent and nearby (z = 0.34) gamma-ray burst GRB130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, it is exceptional due to the extremely long-lived high-energy (100 MeV to 100 GeV) gamma-ray emission, which was detected by the Large Area Telescope on the Fermi Gamma-Ray Space Telescope for similar to 70 ks after the initial burst. The persistent, hard-spectrum, high-energy emission suggests that the highest-energy gamma rays may have been produced via synchrotron self-Compton processes though there is also evidence that the high-energy emission may instead be an extension of the synchrotron spectrum. VERITAS, a ground-based imaging atmospheric Cherenkov telescope array, began follow-up observations of GRB130427A similar to 71 ks (similar to 20 hr) after the onset of the burst. The GRB was not detected with VERITAS; however, the high elevation of the observations, coupled with the low redshift of the GRB, make VERITAS a very sensitive probe of the emission from GRB130427A for E > 100 GeV. The non-detection and consequent upper limit derived place constraints on the synchrotron self-Compton model of high-energy gamma-ray emission from this burst.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2017, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, Wystan and Bird, Ralph and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cerruti, M. and Chen, X. and Ciupik, L. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Hutten, M. and Hakansson, N. and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nguyen, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pelassa, V. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Fegan, S. and Giebels, B. and Horan, D. and Berdyugin, A. and Kuan, J. and Lindfors, E. and Nilsson, K. and Oksanen, A. and Prokoph, H. and Reinthal, R. and Takalo, L. and Zefi, F.}, title = {A Luminous and Isolated Gamma-Ray Flare from the Blazar B2 1215+30}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {836}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration;Fermi-LAT Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/836/2/205}, pages = {6}, year = {2017}, abstract = {B2 1215+30 is a BL-Lac-type blazar that was first detected at TeV energies by the MAGIC atmospheric Cherenkov telescopes and subsequently confirmed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory with data collected between 2009 and 2012. In 2014 February 08, VERITAS detected a large-amplitude flare from B2. 1215+30 during routine monitoring observations of the blazar 1ES. 1218+304, located in the same field of view. The TeV flux reached 2.4 times the Crab Nebula flux with a variability timescale of <3.6 hr. Multiwavelength observations with Fermi-LAT, Swift, and the Tuorla Observatory revealed a correlated high GeV flux state and no significant optical counterpart to the flare, with a spectral energy distribution where the gamma-ray luminosity exceeds the synchrotron luminosity. When interpreted in the framework of a onezone leptonic model, the observed emission implies a high degree of beaming, with Doppler factor delta > 10, and an electron population with spectral index p < 2.3.}, language = {en} } @article{ArchambaultArcherBenbowetal.2017, author = {Archambault, S. and Archer, A. and Benbow, Wystan and Bird, Ralph and Bourbeau, E. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Cerruti, M. and Connolly, M. P. and Cui, W. and Dwarkadas, Vikram V. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Griffin, S. and Huetten, M. and Hanna, D. and Holder, J. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, Nahee and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Slane, P. and Staszak, D. and Telezhinsky, Igor O. and Trepanier, S. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Weisgarber, T. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Gamma-ray Observations of Tycho's Supernova Remnant with VERITAS and Fermi}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {836}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/836/1/23}, pages = {8}, year = {2017}, language = {en} } @article{AliuArchambaultArlenetal.2012, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Boettcher, Markus and Bouvier, A. and Bugaev, V. and Cannon, A. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Dumm, J. and Errando, M. and Falcone, A. and Federici, Stefania and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hughes, G. and Hui, C. M. and Imran, A. and Jameil, O. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Kerr, J. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Lee, K. and Madhavan, A. S. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Quinn, J. and Ragan, K. and Reynolds, P. T. and Roache, E. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Sentuerk, G. D. and Smith, A. W. and Staszak, D. and Stroh, M. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Varlotta, A. and Vassiliev, V. V. and Vivier, M. and Wakely, S. P. and Ward, J. E. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B.}, title = {Multiwavelength observations of the AGN 1ES 0414+009 with veritas, FERMI-LAT, SWIFT-XRT, AND MDM}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {755}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/755/2/118}, pages = {7}, year = {2012}, abstract = {We present observations of the BL Lac object 1ES 0414+009 in the >200 GeV gamma-ray band by the VERITAS array of Cherenkov telescopes. 1ES 0414+009 was observed by VERITAS between 2008 January and 2011 February, resulting in 56.2 hr of good quality pointed observations. These observations resulted in a detection of 822 events from the source corresponding to a statistical significance of 6.4 standard deviations (6.4 sigma) above the background. The source flux, showing no evidence for variability, is measured as (5.2 +/- 1.1(stat) +/- 2.6(sys)) x 10(-12) photons cm(-2) s(-1) above 200 GeV, equivalent to approximately 2\% of the Crab Nebula flux above this energy. The differential photon spectrum from 230 GeV to 850 GeV is well fit by a power law with a photon index of Gamma = 3.4 +/- 0.5(stat) +/- 0.3(sys) and a flux normalization of (1.6 +/- 0.3(stat) +/- 0.8(sys)) x 10(-11) photons cm(-2) s(-1) at 300 GeV. We also present multiwavelength results taken in the optical (MDM), x-ray (Swift-XRT), and GeV (Fermi-LAT) bands and use these results to construct a broadband spectral energy distribution (SED). Modeling of this SED indicates that homogenous one-zone leptonic scenarios are not adequate to describe emission from the system, with a lepto-hadronic model providing a better fit to the data.}, language = {en} } @article{AliuArchambaultAuneetal.2014, author = {Aliu, E. and Archambault, S. and Aune, T. and Behera, B. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Buckley, J. H. and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dumm, J. and Dwarkadas, Vikram V. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krennrich, F. and Kumar, S. and Lang, M. J. and Madhavan, A. S. and Maier, G. and McCann, A. J. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Pandel, D. and Park, N. and Pohl, Martin and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Rajotte, J. and Ratliff, G. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rousselle, J. and Sembroski, G. H. and Shahinyan, K. and Sheidaei, F. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tsurusaki, K. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Ward, J. E. and Weinstein, A. and Welsing, R. and Wilhelm, Alina}, title = {Investigating the TeV morpholoy of MGRO J1908+06 with veritas}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {787}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/787/2/166}, pages = {7}, year = {2014}, abstract = {We report on deep observations of the extended TeV gamma-ray source MGRO J1908+06 made with the VERITAS very high energy gamma-ray observatory. Previously, the TeV emission has been attributed to the pulsar wind nebula (PWN) of the Fermi-LAT pulsar PSR J1907+0602. We detect MGRO J1908+06 at a significance level of 14 standard deviations (14 sigma) and measure a photon index of 2.20 +/- 0.10(stat) +/- 0.20(sys). The TeV emission is extended, covering the region near PSR J1907+0602 and also extending toward SNR G40.5-0.5. When fitted with a two-dimensional Gaussian, the intrinsic extension has a standard deviation of sigma(src) = 0 degrees.44 +/- 0 degrees.02. In contrast to other TeV PWNe of similar age in which the TeV spectrum softens with distance from the pulsar, the TeV spectrum measured near the pulsar location is consistent with that measured at a position near the rim of G40.5-0.5, 0 degrees.33 away.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2016, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Christiansen, J. L. and Ciupik, L. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Fegan, D. J. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Petrashyk, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Ratliff, G. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Williams, D. A. and Zitzer, B.}, title = {A SEARCH FOR BRIEF OPTICAL FLASHES ASSOCIATED WITH THE SETI TARGET KIC 8462852}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {818}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8205/818/2/L33}, pages = {6}, year = {2016}, abstract = {The F-type star KIC. 8462852 has recently been identified as an exceptional target for search for extraterrestrial intelligence (SETI) observations. We describe an analysis methodology for optical SETI, which we have used to analyze nine hours of serendipitous archival observations of KIC. 8462852 made with the VERITAS gamma-ray observatory between 2009 and 2015. No evidence of pulsed optical beacons, above a pulse intensity at the Earth of approximately 1 photon m(-2), is found. We also discuss the potential use of imaging atmospheric Cherenkov telescope arrays in searching for extremely short duration optical transients in general.}, language = {en} }