@article{CaruccioDeufemiaNaumannetal.2021, author = {Caruccio, Loredana and Deufemia, Vincenzo and Naumann, Felix and Polese, Giuseppe}, title = {Discovering relaxed functional dependencies based on multi-attribute dominance}, series = {IEEE transactions on knowledge and data engineering}, volume = {33}, journal = {IEEE transactions on knowledge and data engineering}, number = {9}, publisher = {Institute of Electrical and Electronics Engineers}, address = {New York, NY}, issn = {1041-4347}, doi = {10.1109/TKDE.2020.2967722}, pages = {3212 -- 3228}, year = {2021}, abstract = {With the advent of big data and data lakes, data are often integrated from multiple sources. Such integrated data are often of poor quality, due to inconsistencies, errors, and so forth. One way to check the quality of data is to infer functional dependencies (fds). However, in many modern applications it might be necessary to extract properties and relationships that are not captured through fds, due to the necessity to admit exceptions, or to consider similarity rather than equality of data values. Relaxed fds (rfds) have been introduced to meet these needs, but their discovery from data adds further complexity to an already complex problem, also due to the necessity of specifying similarity and validity thresholds. We propose Domino, a new discovery algorithm for rfds that exploits the concept of dominance in order to derive similarity thresholds of attribute values while inferring rfds. An experimental evaluation on real datasets demonstrates the discovery performance and the effectiveness of the proposed algorithm.}, language = {en} } @article{SchirmerPapenbrockKoumarelasetal.2020, author = {Schirmer, Philipp and Papenbrock, Thorsten and Koumarelas, Ioannis and Naumann, Felix}, title = {Efficient discovery of matching dependencies}, series = {ACM transactions on database systems : TODS}, volume = {45}, journal = {ACM transactions on database systems : TODS}, number = {3}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {0362-5915}, doi = {10.1145/3392778}, pages = {33}, year = {2020}, abstract = {Matching dependencies (MDs) are data profiling results that are often used for data integration, data cleaning, and entity matching. They are a generalization of functional dependencies (FDs) matching similar rather than same elements. As their discovery is very difficult, existing profiling algorithms find either only small subsets of all MDs or their scope is limited to only small datasets. We focus on the efficient discovery of all interesting MDs in real-world datasets. For this purpose, we propose HyMD, a novel MD discovery algorithm that finds all minimal, non-trivial MDs within given similarity boundaries. The algorithm extracts the exact similarity thresholds for the individual MDs from the data instead of using predefined similarity thresholds. For this reason, it is the first approach to solve the MD discovery problem in an exact and truly complete way. If needed, the algorithm can, however, enforce certain properties on the reported MDs, such as disjointness and minimum support, to focus the discovery on such results that are actually required by downstream use cases. HyMD is technically a hybrid approach that combines the two most popular dependency discovery strategies in related work: lattice traversal and inference from record pairs. Despite the additional effort of finding exact similarity thresholds for all MD candidates, the algorithm is still able to efficiently process large datasets, e.g., datasets larger than 3 GB.}, language = {en} } @book{AbedjanNaumann2011, author = {Abedjan, Ziawasch and Naumann, Felix}, title = {Advancing the discovery of unique column combinations}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-148-6}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53564}, publisher = {Universit{\"a}t Potsdam}, pages = {25}, year = {2011}, abstract = {Unique column combinations of a relational database table are sets of columns that contain only unique values. Discovering such combinations is a fundamental research problem and has many different data management and knowledge discovery applications. Existing discovery algorithms are either brute force or have a high memory load and can thus be applied only to small datasets or samples. In this paper, the wellknown GORDIAN algorithm and "Apriori-based" algorithms are compared and analyzed for further optimization. We greatly improve the Apriori algorithms through efficient candidate generation and statistics-based pruning methods. A hybrid solution HCAGORDIAN combines the advantages of GORDIAN and our new algorithm HCA, and it significantly outperforms all previous work in many situations.}, language = {en} } @book{BauckmannLeserNaumann2010, author = {Bauckmann, Jana and Leser, Ulf and Naumann, Felix}, title = {Efficient and exact computation of inclusion dependencies for data integration}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-048-9}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41396}, publisher = {Universit{\"a}t Potsdam}, pages = {36}, year = {2010}, abstract = {Data obtained from foreign data sources often come with only superficial structural information, such as relation names and attribute names. Other types of metadata that are important for effective integration and meaningful querying of such data sets are missing. In particular, relationships among attributes, such as foreign keys, are crucial metadata for understanding the structure of an unknown database. The discovery of such relationships is difficult, because in principle for each pair of attributes in the database each pair of data values must be compared. A precondition for a foreign key is an inclusion dependency (IND) between the key and the foreign key attributes. We present with Spider an algorithm that efficiently finds all INDs in a given relational database. It leverages the sorting facilities of DBMS but performs the actual comparisons outside of the database to save computation. Spider analyzes very large databases up to an order of magnitude faster than previous approaches. We also evaluate in detail the effectiveness of several heuristics to reduce the number of necessary comparisons. Furthermore, we generalize Spider to find composite INDs covering multiple attributes, and partial INDs, which are true INDs for all but a certain number of values. This last type is particularly relevant when integrating dirty data as is often the case in the life sciences domain - our driving motivation.}, language = {en} }