@misc{FelisattiLaubrockShakietal.2020, author = {Felisatti, Arianna and Laubrock, Jochen and Shaki, Samuel and Fischer, Martin H.}, title = {Commentary}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {620}, issn = {1866-8364}, doi = {10.25932/publishup-46041}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460413}, pages = {6}, year = {2020}, language = {en} } @article{FelisattiLaubrockShakietal.2020, author = {Felisatti, Arianna and Laubrock, Jochen and Shaki, Samuel and Fischer, Martin H.}, title = {Commentary}, series = {Frontiers in Human Neuroscience}, volume = {14}, journal = {Frontiers in Human Neuroscience}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2020.00099}, pages = {4}, year = {2020}, language = {en} } @misc{SchmidtFelisattiAsteretal.2021, author = {Schmidt, Hendrikje and Felisatti, Arianna and Aster, Michael von and Wilbert, J{\"u}rgen and Moers, Arpad von and Fischer, Martin H.}, title = {Neuromuscular Diseases Affect Number Representation and Processing}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, issn = {1866-8364}, doi = {10.25932/publishup-52231}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-522312}, pages = {15}, year = {2021}, abstract = {Spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD) both are rare genetic neuromuscular diseases with progressive loss of motor ability. The neuromotor developmental course of those diseases is well documented. In contrast, there is only little evidence about characteristics of general and specific cognitive development. In both conditions the final motor outcome is characterized by an inability to move autonomously: children with SMA never accomplish independent motoric exploration of their environment, while children with DMD do but later lose this ability again. These profound differences in developmental pathways might affect cognitive development of SMA vs. DMD children, as cognition is shaped by individual motor experiences. DMD patients show impaired executive functions, working memory, and verbal IQ, whereas only motor ability seems to be impaired in SMA. Advanced cognitive capacity in SMA may serve as a compensatory mechanism for achieving in education, career progression, and social satisfaction. This study aimed to relate differences in basic numerical concepts and arithmetic achievement in SMA and DMD patients to differences in their motor development and resulting sensorimotor and environmental experiences. Horizontal and vertical spatial-numerical associations were explored in SMA/DMD children ranging between 6 and 12 years through the random number generation task. Furthermore, arithmetic skills as well as general cognitive ability were assessed. Groups differed in spatial number processing as well as in arithmetic and domain-general cognitive functions. Children with SMA showed no horizontal and even reversed vertical spatial-numerical associations. Children with DMD on the other hand revealed patterns in spatial numerical associations comparable to healthy developing children. From the embodied Cognition perspective, early sensorimotor experience does play a role in development of mental number representations. However, it remains open whether and how this becomes relevant for the acquisition of higher order cognitive and arithmetic skills.}, language = {en} } @article{SchmidtFelisattiAsteretal.2021, author = {Schmidt, Hendrikje and Felisatti, Arianna and Aster, Michael von and Wilbert, J{\"u}rgen and Moers, Arpad von and Fischer, Martin H.}, title = {Neuromuscular diseases affect number representation and processing}, series = {Frontiers in psychology / Frontiers Research Foundation}, volume = {12}, journal = {Frontiers in psychology / Frontiers Research Foundation}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.697881}, pages = {13}, year = {2021}, abstract = {Spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD) both are rare genetic neuromuscular diseases with progressive loss of motor ability. The neuromotor developmental course of those diseases is well documented. In contrast, there is only little evidence about characteristics of general and specific cognitive development. In both conditions the final motor outcome is characterized by an inability to move autonomously: children with SMA never accomplish independent motoric exploration of their environment, while children with DMD do but later lose this ability again. These profound differences in developmental pathways might affect cognitive development of SMA vs. DMD children, as cognition is shaped by individual motor experiences. DMD patients show impaired executive functions, working memory, and verbal IQ, whereas only motor ability seems to be impaired in SMA. Advanced cognitive capacity in SMA may serve as a compensatory mechanism for achieving in education, career progression, and social satisfaction. This study aimed to relate differences in basic numerical concepts and arithmetic achievement in SMA and DMD patients to differences in their motor development and resulting sensorimotor and environmental experiences. Horizontal and vertical spatial-numerical associations were explored in SMA/DMD children ranging between 6 and 12 years through the random number generation task. Furthermore, arithmetic skills as well as general cognitive ability were assessed. Groups differed in spatial number processing as well as in arithmetic and domain-general cognitive functions. Children with SMA showed no horizontal and even reversed vertical spatial-numerical associations. Children with DMD on the other hand revealed patterns in spatial numerical associations comparable to healthy developing children. From the embodied Cognition perspective, early sensorimotor experience does play a role in development of mental number representations. However, it remains open whether and how this becomes relevant for the acquisition of higher order cognitive and arithmetic skills.}, language = {en} } @article{FelisattiLaubrockShakietal.2020, author = {Felisatti, Arianna and Laubrock, Jochen and Shaki, Samuel and Fischer, Martin H.}, title = {A biological foundation for spatial-numerical associations}, series = {Annals of the New York Academy of Sciences}, volume = {1477}, journal = {Annals of the New York Academy of Sciences}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0077-8923}, doi = {10.1111/nyas.14418}, pages = {44 -- 53}, year = {2020}, abstract = {"Left" and "right" coordinates control our spatial behavior and even influence abstract thoughts. For number concepts, horizontal spatial-numerical associations (SNAs) have been widely documented: we associate few with left and many with right. Importantly, increments are universally coded on the right side even in preverbal humans and nonhuman animals, thus questioning the fundamental role of directional cultural habits, such as reading or finger counting. Here, we propose a biological, nonnumerical mechanism for the origin of SNAs on the basis of asymmetric tuning of animal brains for different spatial frequencies (SFs). The resulting selective visual processing predicts both universal SNAs and their context-dependence. We support our proposal by analyzing the stimuli used to document SNAs in newborns for their SF content. As predicted, the SFs contained in visual patterns with few versus many elements preferentially engage right versus left brain hemispheres, respectively, thus predicting left-versus rightward behavioral biases. Our "brain's asymmetric frequency tuning" hypothesis explains the perceptual origin of horizontal SNAs for nonsymbolic visual numerosities and might be extensible to the auditory domain.}, language = {en} } @article{FelisattiAagtenMurphyLaubrocketal.2020, author = {Felisatti, Arianna and Aagten-Murphy, David and Laubrock, Jochen and Shaki, Samuel and Fischer, Martin H.}, title = {The brain's asymmetric frequency tuning}, series = {Symmetry / Molecular Diversity Preservation International (MDPI)}, volume = {12}, journal = {Symmetry / Molecular Diversity Preservation International (MDPI)}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2073-8994}, doi = {10.3390/sym12122083}, pages = {25}, year = {2020}, abstract = {To construct a coherent multi-modal percept, vertebrate brains extract low-level features (such as spatial and temporal frequencies) from incoming sensory signals. However, because frequency processing is lateralized with the right hemisphere favouring low frequencies while the left favours higher frequencies, this introduces asymmetries between the hemispheres. Here, we describe how this lateralization shapes the development of several cognitive domains, ranging from visuo-spatial and numerical cognition to language, social cognition, and even aesthetic appreciation, and leads to the emergence of asymmetries in behaviour. We discuss the neuropsychological and educational implications of these emergent asymmetries and suggest future research approaches.}, language = {en} } @article{FelisattiFischerKulkovaetal.2021, author = {Felisatti, Arianna and Fischer, Martin H. and Kulkova, Elena and K{\"u}hne, Katharina and Michirev, Alexej}, title = {Separation/connection procedures}, series = {Behavioral and brain sciences : an international journal of current research and theory with open peer commentary}, volume = {44}, journal = {Behavioral and brain sciences : an international journal of current research and theory with open peer commentary}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {1469-1825}, doi = {10.1017/S0140525X20000461}, pages = {2}, year = {2021}, abstract = {Lee and Schwarz (L\&S) suggest that separation is the grounded procedure underlying cleansing effects in different psychological domains. Here, we interpret L\&S's account from a hierarchical view of cognition that considers the influence of physical properties and sensorimotor constraints on mental representations. This approach allows theoretical integration and generalization of L\&S's account to the domain of formal quantitative reasoning.}, language = {en} } @misc{FischerWinterFelisattietal.2021, author = {Fischer, Martin H. and Winter, Bodo and Felisatti, Arianna and Myachykov, Andriy and Jeglinski-Mende, Melinda A. and Shaki, Samuel}, title = {More Instructions Make Fewer Subtractions}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, volume = {12}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-55008}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550086}, pages = {1 -- 3}, year = {2021}, abstract = {Research on problem solving offers insights into how humans process task-related information and which strategies they use (Newell and Simon, 1972; {\"O}llinger et al., 2014). Problem solving can be defined as the search for possible changes in one's mind (Kahneman, 2003). In a recent study, Adams et al. (2021) assessed whether the predominant problem solving strategy when making changes involves adding or subtracting elements. In order to do this, they used several examples of simple problems, such as editing text or making visual patterns symmetrical, either in naturalistic settings or on-line. The essence of the authors' findings is a strong preference to add rather than subtract elements across a diverse range of problems, including the stabilizing of artifacts, creating symmetrical patterns, or editing texts. More specifically, they succeeded in demonstrating that "participants were less likely to identify advantageous subtractive changes when the task did not (vs. did) cue them to consider subtraction, when they had only one opportunity (vs. several) to recognize the shortcomings of an additive search strategy or when they were under a higher (vs. lower) cognitive load" (Adams et al., 2021, p. 258). Addition and subtraction are generally defined as de-contextualized mathematical operations using abstract symbols (Russell, 1903/1938). Nevertheless, understanding of both symbols and operations is informed by everyday activities, such as making or breaking objects (Lakoff and N{\´u}{\~n}ez, 2000; Fischer and Shaki, 2018). The universal attribution of "addition bias" or "subtraction neglect" to problem solving activities is perhaps a convenient shorthand but it overlooks influential framing effects beyond those already acknowledged in the report and the accompanying commentary (Meyvis and Yoon, 2021). Most importantly, while Adams et al.'s study addresses an important issue, their very method of verbally instructing participants, together with lack of control over several known biases, might render their findings less than conclusive. Below, we discuss our concerns that emerged from the identified biases, namely those regarding the instructions and the experimental materials. Moreover, we refer to research from mathematical cognition that provides new insights into Adams et al.'s findings.}, language = {en} } @article{FischerWinterFelisattietal.2021, author = {Fischer, Martin H. and Winter, Bodo and Felisatti, Arianna and Myachykov, Andriy and Jeglinski-Mende, Melinda A. and Shaki, Samuel}, title = {More instructions make fewer subtractions}, series = {Frontiers in psychology / Frontiers Research Foundation}, volume = {12}, journal = {Frontiers in psychology / Frontiers Research Foundation}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.720616}, pages = {1 -- 3}, year = {2021}, abstract = {Research on problem solving offers insights into how humans process task-related information and which strategies they use (Newell and Simon, 1972; {\"O}llinger et al., 2014). Problem solving can be defined as the search for possible changes in one's mind (Kahneman, 2003). In a recent study, Adams et al. (2021) assessed whether the predominant problem solving strategy when making changes involves adding or subtracting elements. In order to do this, they used several examples of simple problems, such as editing text or making visual patterns symmetrical, either in naturalistic settings or on-line. The essence of the authors' findings is a strong preference to add rather than subtract elements across a diverse range of problems, including the stabilizing of artifacts, creating symmetrical patterns, or editing texts. More specifically, they succeeded in demonstrating that "participants were less likely to identify advantageous subtractive changes when the task did not (vs. did) cue them to consider subtraction, when they had only one opportunity (vs. several) to recognize the shortcomings of an additive search strategy or when they were under a higher (vs. lower) cognitive load" (Adams et al., 2021, p. 258). Addition and subtraction are generally defined as de-contextualized mathematical operations using abstract symbols (Russell, 1903/1938). Nevertheless, understanding of both symbols and operations is informed by everyday activities, such as making or breaking objects (Lakoff and N{\´u}{\~n}ez, 2000; Fischer and Shaki, 2018). The universal attribution of "addition bias" or "subtraction neglect" to problem solving activities is perhaps a convenient shorthand but it overlooks influential framing effects beyond those already acknowledged in the report and the accompanying commentary (Meyvis and Yoon, 2021). Most importantly, while Adams et al.'s study addresses an important issue, their very method of verbally instructing participants, together with lack of control over several known biases, might render their findings less than conclusive. Below, we discuss our concerns that emerged from the identified biases, namely those regarding the instructions and the experimental materials. Moreover, we refer to research from mathematical cognition that provides new insights into Adams et al.'s findings.}, language = {en} } @article{BelliFelisattiFischer2021, author = {Belli, Francesco and Felisatti, Arianna and Fischer, Martin H.}, title = {"BreaThink"}, series = {Experimental brain research}, volume = {239}, journal = {Experimental brain research}, number = {8}, publisher = {Springer}, address = {New York}, issn = {0014-4819}, doi = {10.1007/s00221-021-06147-z}, pages = {2489 -- 2499}, year = {2021}, abstract = {Cognition is shaped by signals from outside and within the body. Following recent evidence of interoceptive signals modulating higher-level cognition, we examined whether breathing changes the production and perception of quantities. In Experiment 1, 22 adults verbally produced on average larger random numbers after inhaling than after exhaling. In Experiment 2, 24 further adults estimated the numerosity of dot patterns that were briefly shown after either inhaling or exhaling. Again, we obtained on average larger responses following inhalation than exhalation. These converging results extend models of situated cognition according to which higher-level cognition is sensitive to transient interoceptive states.}, language = {en} } @phdthesis{Felisatti2024, author = {Felisatti, Arianna}, title = {Spatial-numerical associations: From biological foundations to embodied learning to contextual flexibility}, doi = {10.25932/publishup-64179}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-641791}, school = {Universit{\"a}t Potsdam}, pages = {x, 195}, year = {2024}, abstract = {Among the different meanings carried by numerical information, cardinality is fundamental for survival and for the development of basic as well as of higher numerical skills. Importantly, the human brain inherits from evolution a predisposition to map cardinality onto space, as revealed by the presence of spatial-numerical associations (SNAs) in humans and animals. Here, the mapping of cardinal information onto physical space is addressed as a hallmark signature characterizing numerical cognition. According to traditional approaches, cognition is defined as complex forms of internal information processing, taking place in the brain (cognitive processor). On the contrary, embodied cognition approaches define cognition as functionally linked to perception and action, in the continuous interaction between a biological body and its physical and sociocultural environment. Embracing the principles of the embodied cognition perspective, I conducted four novel studies designed to unveil how SNAs originate, develop, and adapt, depending on characteristics of the organism, the context, and their interaction. I structured my doctoral thesis in three levels. At the grounded level (Study 1), I unfold the biological foundations underlying the tendency to map cardinal information across space; at the embodied level (Study 2), I reveal the impact of atypical motor development on the construction of SNAs; at the situated level (Study 3), I document the joint influence of visuospatial attention and task properties on SNAs. Furthermore, I experimentally investigate the presence of associations between physical and numerical distance, another numerical property fundamental for the development of efficient mathematical minds (Study 4). In Study 1, I present the Brain's Asymmetric Frequency Tuning hypothesis that relies on hemispheric asymmetries for processing spatial frequencies, a low-level visual feature that the (in)vertebrate brain extracts from any visual scene to create a coherent percept of the world. Computational analyses of the power spectra of the original stimuli used to document the presence of SNAs in human newborns and animals, support the brain's asymmetric frequency tuning as a theoretical account and as an evolutionarily inherited mechanism scaffolding the universal and innate tendency to represent cardinality across horizontal space. In Study 2, I explore SNAs in children with rare genetic neuromuscular diseases: spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD). SMA children never accomplish independent motoric exploration of their environment; in contrast, DMD children do explore but later lose this ability. The different SNAs reported by the two groups support the critical role of early sensorimotor experiences in the spatial representation of cardinality. In Study 3, I directly compare the effects of overt attentional orientation during explicit and implicit processing of numerical magnitude. First, the different effects of attentional orienting based on the type of assessment support different mechanisms underlying SNAs during explicit and implicit assessment of numerical magnitude. Secondly, the impact of vertical shifts of attention on the processing of numerical distance sheds light on the correspondence between numerical distance and peri-personal distance. In Study 4, I document the presence of different SNAs, driven by numerical magnitude and numerical distance, by employing different response mappings (left vs. right and near vs. distant). In the field of numerical cognition, the four studies included in the present thesis contribute to unveiling how the characteristics of the organism and the environment influence the emergence, the development, and the flexibility of our attitude to represent cardinal information across space, thus supporting the predictions of the embodied cognition approach. Furthermore, they inform a taxonomy of body-centred factors (biological properties of the brain and sensorimotor system) modulating the spatial representation of cardinality throughout the course of life, at the grounded, embodied, and situated levels. If the awareness for different variables influencing SNAs over the course of life is important, it is equally important to consider the organism as a whole in its sensorimotor interaction with the world. Inspired by my doctoral research, here I propose a holistic perspective that considers the role of evolution, embodiment, and environment in the association of cardinal information with directional space. The new perspective advances the current approaches to SNAs, both at the conceptual and at the methodological levels. Unveiling how the mental representation of cardinality emerges, develops, and adapts is necessary to shape efficient mathematical minds and achieve economic productivity, technological progress, and a higher quality of life.}, language = {en} } @article{FelisattiRanziniBlinietal.2022, author = {Felisatti, Arianna and Ranzini, Mariagrazia and Blini, Elvio and Lisi, Matteo and Zorzi, Marco}, title = {Effects of attentional shifts along the vertical axis on number processing}, series = {Cognition : international journal of cognitive science}, volume = {221}, journal = {Cognition : international journal of cognitive science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0010-0277}, doi = {10.1016/j.cognition.2021.104991}, pages = {11}, year = {2022}, abstract = {Previous studies suggest that associations between numbers and space are mediated by shifts of visuospatial attention along the horizontal axis. In this study, we investigated the effect of vertical shifts of overt attention, induced by optokinetic stimulation (OKS) and monitored through eye-tracking, in two tasks requiring explicit (number comparison) or implicit (parity judgment) processing of number magnitude. Participants were exposed to black-and-white stripes (OKS) that moved vertically (upward or downward) or remained static (control condition). During the OKS, participants were asked to verbally classify auditory one-digit numbers as larger/smaller than 5 (comparison task; Exp. 1) or as odd/even (parity task; Exp. 2). OKS modulated response times in both experiments. In Exp.1, upward attentional displacement decreased the Magnitude effect (slower responses for large numbers) and increased the Distance effect (slower responses for numbers close to the reference). In Exp.2, we observed a complex interaction between parity, magnitude, and OKS, indicating that downward attentional displacement slowed down responses for large odd numbers. Moreover, eye tracking analyses revealed an influence of number processing on eye movements both in Exp. 1, with eye gaze shifting downwards during the processing of small numbers as compared to large ones; and in Exp. 2, with leftward shifts after large even numbers (6,8) and rightward shifts after large odd numbers (7,9). These results provide evidence of bidirectional links between number and space and extend them to the vertical dimension. Moreover, they document the influence of visuo-spatial attention on processing of numerical magnitude, numerical distance, and parity. Together, our findings are in line with grounded and embodied accounts of numerical cognition.}, language = {en} }