@article{AllanWeisserFischeretal.2013, author = {Allan, Eric and Weisser, Wolfgang W. and Fischer, Markus and Schulze, Ernst-Detlef and Weigelt, Alexandra and Roscher, Christiane and Baade, Jussi and Barnard, Romain L. and Bessler, Holger and Buchmann, Nina and Ebeling, Anne and Eisenhauer, Nico and Engels, Christof and Fergus, Alexander J. F. and Gleixner, Gerd and Gubsch, Marlen and Halle, Stefan and Klein, Alexandra-Maria and Kertscher, Ilona and Kuu, Annely and Lange, Markus and Le Roux, Xavier and Meyer, Sebastian T. and Migunova, Varvara D. and Milcu, Alexandru and Niklaus, Pascal A. and Oelmann, Yvonne and Pasalic, Esther and Petermann, Jana S. and Poly, Franck and Rottstock, Tanja and Sabais, Alexander C. W. and Scherber, Christoph and Scherer-Lorenzen, Michael and Scheu, Stefan and Steinbeiss, Sibylle and Schwichtenberg, Guido and Temperton, Vicky and Tscharntke, Teja and Voigt, Winfried and Wilcke, Wolfgang and Wirth, Christian and Schmid, Bernhard}, title = {A comparison of the strength of biodiversity effects across multiple functions}, series = {Oecologia}, volume = {173}, journal = {Oecologia}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-012-2589-0}, pages = {223 -- 237}, year = {2013}, abstract = {In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 \% of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination.}, language = {en} } @article{SchulzeMakuchWagnerKounavesetal.2018, author = {Schulze-Makuch, Dirk and Wagner, Dirk and Kounaves, Samuel P. and Mangelsdorf, Kai and Devine, Kevin G. and de Vera, Jean-Pierre and Schmitt-Kopplin, Philippe and Grossart, Hans-Peter and Parro, Victor and Kaupenjohann, Martin and Galy, Albert and Schneider, Beate and Airo, Alessandro and Froesler, Jan and Davila, Alfonso F. and Arens, Felix L. and Caceres, Luis and Cornejo, Francisco Solis and Carrizo, Daniel and Dartnell, Lewis and DiRuggiero, Jocelyne and Flury, Markus and Ganzert, Lars and Gessner, Mark O. and Grathwohl, Peter and Guan, Lisa and Heinz, Jacob and Hess, Matthias and Keppler, Frank and Maus, Deborah and McKay, Christopher P. and Meckenstock, Rainer U. and Montgomery, Wren and Oberlin, Elizabeth A. and Probst, Alexander J. and Saenz, Johan S. and Sattler, Tobias and Schirmack, Janosch and Sephton, Mark A. and Schloter, Michael and Uhl, Jenny and Valenzuela, Bernardita and Vestergaard, Gisle and Woermer, Lars and Zamorano, Pedro}, title = {Transitory microbial habitat in the hyperarid Atacama Desert}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {115}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {11}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1714341115}, pages = {2670 -- 2675}, year = {2018}, language = {en} } @article{BotteriPeveriBerstadetal.2022, author = {Botteri, Edoardo and Peveri, Giulia and Berstad, Paula and Bagnardi, Vincenzo and Chen, Sairah L. F. and Sandanger, Torkjel M. and Hoff, Geir and Dahm, Christina C. and Antoniussen, Christian S. and Tjonneland, Anne and Eriksen, Anne Kirstine and Skeie, Guri and Perez-Cornago, Aurora and Huerta, Jose Maria and Jakszyn, Paula and Harlid, Sophia and Sundstroem, Bjoern and Barricarte, Aurelio and Monninkhof, Evelyn M. and Derksen, Jeroen W. G. and Schulze, Matthias Bernd and Bueno-de-Mesquita, Bas and Sanchez, Maria-Jose and Cross, Amanda J. and Tsilidis, Konstantinos K. and De Magistris, Maria Santucci and Kaaks, Rudolf and Katzke, Verena and Rothwell, Joseph A. and Laouali, Nasser and Severi, Gianluca and Amiano, Pilar and Contiero, Paolo and Sacerdote, Carlotta and Goldberg, Marcel and Touvier, Mathilde and Freisling, Heinz and Viallon, Vivian and Weiderpass, Elisabete and Riboli, Elio and Gunter, Marc J. and Jenab, Mazda and Ferrari, Pietro}, title = {Changes in lifestyle and risk of colorectal cancer in the European prospective investigation into cancer and nutrition}, series = {The American journal of gastroenterology : AJG}, volume = {118}, journal = {The American journal of gastroenterology : AJG}, number = {4}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0002-9270}, doi = {10.14309/ajg.0000000000002065}, pages = {702 -- 711}, year = {2022}, abstract = {INTRODUCTION: We investigated the impact of changes in lifestyle habits on colorectal cancer (CRC) risk in a multicountry European cohort. METHODS: We used baseline and follow-up questionnaire data from the European Prospective Investigation into Cancer cohort to assess changes in lifestyle habits and their associations with CRC development. We calculated a healthy lifestyle index (HLI) score based on smoking status, alcohol consumption, body mass index, and physical activity collected at the 2 time points. HLI ranged from 0 (most unfavorable) to 16 (most favorable). We estimated the association between HLI changes and CRC risk using Cox regression models and reported hazard ratios (HR) with 95\% confidence intervals (CI). RESULTS: Among 295,865 participants, 2,799 CRC cases were observed over a median of 7.8 years. The median time between questionnaires was 5.7 years. Each unit increase in HLI from the baseline to the follow-up assessment was associated with a statistically significant 3\% lower CRC risk. Among participants in the top tertile at baseline (HLI > 11), those in the bottom tertile at follow-up (HLI <= 9) had a higher CRC risk (HR 1.34; 95\% CI 1.02-1.75) than those remaining in the top tertile. Among individuals in the bottom tertile at baseline, those in the top tertile at follow-up had a lower risk (HR 0.77; 95\% CI 0.59-1.00) than those remaining in the bottom tertile. DISCUSSION: Improving adherence to a healthy lifestyle was inversely associated with CRC risk, while worsening adherence was positively associated with CRC risk. These results justify and support recommendations for healthy lifestyle changes and healthy lifestyle maintenance for CRC prevention.}, language = {en} }