@misc{HanackSchloerHolzloehneretal.2016, author = {Hanack, Katja and Schloer, Anja and Holzloehner, Pamela and Listek, Martin and Bauer, Cindy and Butze, Monique and Micheel, Burkhard and Hentschel, Christian and Sowa, Mandy and Roggenbuck, Dirk and Schierack, Peter and Fuener, Jonas and Schliebs, Erik and Goihl, Alexander and Reinhold, Dirk}, title = {Camelid nanobodies specific to human pancreatic glycoprotein 2}, series = {The journal of immunology}, volume = {196}, journal = {The journal of immunology}, publisher = {American Assoc. of Immunologists}, address = {Bethesda}, issn = {0022-1767}, pages = {313 -- 328}, year = {2016}, abstract = {Pancreatic secretory zymogen-granule membrane glycoprotein 2 (GP2) has been identified to be a major autoantigenic target in Crohn's disease patients. It was discussed recently that a long and a short isoform of GP2 exists whereas the short isoform is often detected by GP2-specific autoantibodies. In the outcome of inflammatory bowel diseases, these GP2-specific autoantibodies are discussed as new serological markers for diagnosis and therapeutic monitoring. To investigate this further, camelid nanobodies were generated by phage display and selected against the short isoform of GP2 in order to isolate specific tools for the discrimination of both isoforms. Nanobodies are single domain antibodies derived from camelid heavy chain only antibodies and characterized by a high stability and solubility. The selected candidates were expressed, purified and validated regarding their binding properties in different enzyme-linked immunosorbent assays formats, immunofluorescence, immunohistochemistry and surface plasmon resonance spectroscopy. Four different nanobodies could be selected whereof three recognize the short isoform of GP2 very specifically and one nanobody showed a high binding capacity for both isoforms. The KD values measured for all nanobodies were between 1.3 nM and 2.3 pM indicating highly specific binders suitable for the application as diagnostic tool in inflammatory bowel disease.}, language = {en} } @article{PrieskeKruegerAehleetal.2018, author = {Prieske, Olaf and Kr{\"u}ger, Tom and Aehle, Markus and Bauer, Erik and Granacher, Urs}, title = {Effects of Resisted Sprint Training and Traditional Power Training on Sprint, Jump, and Balance Performance in Healthy Young Adults}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.00156}, pages = {1 -- 10}, year = {2018}, abstract = {Power training programs have proved to be effective in improving components of physical fitness such as speed. According to the concept of training specificity, it was postulated that exercises must attempt to closely mimic the demands of the respective activity. When transferring this idea to speed development, the purpose of the present study was to examine the effects of resisted sprint (RST) vs. traditional power training (TPT) on physical fitness in healthy young adults. Thirty-five healthy, physically active adults were randomly assigned to a RST (n = 10, 23 ± 3 years), a TPT (n = 9, 23 ± 3 years), or a passive control group (n = 16, 23 ± 2 years). RST and TPT exercised for 6 weeks with three training sessions/week each lasting 45-60 min. RST comprised frontal and lateral sprint exercises using an expander system with increasing levels of resistance that was attached to a treadmill (h/p/cosmos). TPT included ballistic strength training at 40\% of the one-repetition-maximum for the lower limbs (e.g., leg press, knee extensions). Before and after training, sprint (20-m sprint), change-of-direction speed (T-agility test), jump (drop, countermovement jump), and balance performances (Y balance test) were assessed. ANCOVA statistics revealed large main effects of group for 20-m sprint velocity and ground contact time (0.81 ≤ d ≤ 1.00). Post-hoc tests showed higher sprint velocity following RST and TPT (0.69 ≤ d ≤ 0.82) when compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to 4.5\% for RST [90\%CI: (-1.1\%;10.1\%), d = 1.23] and 2.6\% for TPT [90\%CI: (0.4\%;4.8\%), d = 1.59]. Additionally, ground contact times during sprinting were shorter following RST and TPT (0.68 ≤ d ≤ 1.09) compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to -6.3\% for RST [90\%CI: (-11.4\%;-1.1\%), d = 1.45) and -2.7\% for TPT [90\%CI: (-4.2\%;-1.2\%), d = 2.36]. Finally, effects for change-of-direction speed, jump, and balance performance varied from small-to-large. The present findings indicate that 6 weeks of RST and TPT produced similar effects on 20-m sprint performance compared with a passive control in healthy and physically active, young adults. However, no training-related effects were found for change-of-direction speed, jump and balance performance. We conclude that both training regimes can be applied for speed development.}, language = {en} } @misc{PrieskeKruegerAehleetal.2018, author = {Prieske, Olaf and Kr{\"u}ger, Tom and Aehle, Markus and Bauer, Erik and Granacher, Urs}, title = {Effects of Resisted Sprint Training and Traditional Power Training on Sprint, Jump, and Balance Performance in Healthy Young Adults}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {383}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409645}, pages = {10}, year = {2018}, abstract = {Power training programs have proved to be effective in improving components of physical fitness such as speed. According to the concept of training specificity, it was postulated that exercises must attempt to closely mimic the demands of the respective activity. When transferring this idea to speed development, the purpose of the present study was to examine the effects of resisted sprint (RST) vs. traditional power training (TPT) on physical fitness in healthy young adults. Thirty-five healthy, physically active adults were randomly assigned to a RST (n = 10, 23 ± 3 years), a TPT (n = 9, 23 ± 3 years), or a passive control group (n = 16, 23 ± 2 years). RST and TPT exercised for 6 weeks with three training sessions/week each lasting 45-60 min. RST comprised frontal and lateral sprint exercises using an expander system with increasing levels of resistance that was attached to a treadmill (h/p/cosmos). TPT included ballistic strength training at 40\% of the one-repetition-maximum for the lower limbs (e.g., leg press, knee extensions). Before and after training, sprint (20-m sprint), change-of-direction speed (T-agility test), jump (drop, countermovement jump), and balance performances (Y balance test) were assessed. ANCOVA statistics revealed large main effects of group for 20-m sprint velocity and ground contact time (0.81 ≤ d ≤ 1.00). Post-hoc tests showed higher sprint velocity following RST and TPT (0.69 ≤ d ≤ 0.82) when compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to 4.5\% for RST [90\%CI: (-1.1\%;10.1\%), d = 1.23] and 2.6\% for TPT [90\%CI: (0.4\%;4.8\%), d = 1.59]. Additionally, ground contact times during sprinting were shorter following RST and TPT (0.68 ≤ d ≤ 1.09) compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to -6.3\% for RST [90\%CI: (-11.4\%;-1.1\%), d = 1.45) and -2.7\% for TPT [90\%CI: (-4.2\%;-1.2\%), d = 2.36]. Finally, effects for change-of-direction speed, jump, and balance performance varied from small-to-large. The present findings indicate that 6 weeks of RST and TPT produced similar effects on 20-m sprint performance compared with a passive control in healthy and physically active, young adults. However, no training-related effects were found for change-of-direction speed, jump and balance performance. We conclude that both training regimes can be applied for speed development.}, language = {en} } @article{FoerstnerTschornReinosoSchilleretal.2022, author = {F{\"o}rstner, Bernd R. and Tschorn, Mira and Reinoso-Schiller, Nicolas and Maričić, Lea Mascarell and R{\"o}cher, Erik and Kalman, Janos L. and Stroth, Sanna and Mayer, Annalina V. and Schwarz, Kristina and Kaiser, Anna and Pfennig, Andrea and Manook, Andr{\´e} and Ising, Marcus and Heinig, Ingmar and Pittig, Andre and Heinz, Andreas and Mathiak, Klaus and Schulze, Thomas G. and Schneider, Frank and Kamp-Becker, Inge and Meyer-Lindenberg, Andreas and Padberg, Frank and Banaschewski, Tobias and Bauer, Michael and Rupprecht, Rainer and Wittchen, Hans-Ulrich and Rapp, Michael A.}, title = {Mapping research domain criteria using a transdiagnostic mini-RDoC assessment in mental disorders: a confirmatory factor analysis}, series = {European archives of psychiatry and clinical neuroscience}, volume = {273}, journal = {European archives of psychiatry and clinical neuroscience}, number = {3}, publisher = {Springer Nature}, address = {Heidelberg}, issn = {0940-1334}, doi = {10.1007/s00406-022-01440-6}, pages = {527 -- 539}, year = {2022}, abstract = {This study aimed to build on the relationship of well-established self-report and behavioral assessments to the latent constructs positive (PVS) and negative valence systems (NVS), cognitive systems (CS), and social processes (SP) of the Research Domain Criteria (RDoC) framework in a large transnosological population which cuts across DSM/ICD-10 disorder criteria categories. One thousand four hundred and thirty one participants (42.1\% suffering from anxiety/fear-related, 18.2\% from depressive, 7.9\% from schizophrenia spectrum, 7.5\% from bipolar, 3.4\% from autism spectrum, 2.2\% from other disorders, 18.4\% healthy controls, and 0.2\% with no diagnosis specified) recruited in studies within the German research network for mental disorders for the Phenotypic, Diagnostic and Clinical Domain Assessment Network Germany (PD-CAN) were examined with a Mini-RDoC-Assessment including behavioral and self-report measures. The respective data was analyzed with confirmatory factor analysis (CFA) to delineate the underlying latent RDoC-structure. A revised four-factor model reflecting the core domains positive and negative valence systems as well as cognitive systems and social processes showed a good fit across this sample and showed significantly better fit compared to a one factor solution. The connections between the domains PVS, NVS and SP could be substantiated, indicating a universal latent structure spanning across known nosological entities. This study is the first to give an impression on the latent structure and intercorrelations between four core Research Domain Criteria in a transnosological sample. We emphasize the possibility of using already existing and well validated self-report and behavioral measurements to capture aspects of the latent structure informed by the RDoC matrix.}, language = {en} }