@article{ZollerBethBinosietal.2005, author = {Zoller, Peter and Beth, Thomas and Binosi, D. and Blatt, Rainer and Briegel, Hans J. and Bruss, D. and Calarco, Tommaso and Cirac, Juan Ignacio and Deutsch, David and Eisert, Jens and Ekert, Artur and Fabre, Claude and Gisin, Nicolas and Grangiere, P. and Grassl, Markus and Haroche, Serge and Imamoglu, Atac and Karlson, A. and Kempe, Julia and Kouwenhoven, Leo P. and Kr{\"o}ll, S. and Leuchs, Gerd and Lewenstein, Maciej and Loss, Daniel and L{\"u}tkenhaus, Norbert and Massar, Serge and Mooij, J. E. and Plenio, Martin Bodo and Polzik, Eugene and Popescu, Sandu and Rempe, Gerhard and Sergienko, Alexander and Suter, David and Twamley, John and Wendin, G{\"o}ran and Werner, Reinhard F. and Winter, Andreas and Wrachtrup, J{\"o}rg and Zeilinger, Anton}, title = {Quantum information processing and communication : Strategic report on current status, visions and goals for research in Europe}, issn = {1434-6060}, year = {2005}, abstract = {We present an excerpt of the document "Quantum Information Processing and Communication: Strategic report on current status, visions and goals for research in Europe", which has been recently published in electronic form at the website of FET (the Future and Emerging Technologies Unit of the Directorate General Information Society of the European Commission, http://www.cordis.lu/ist/fet/qipc-sr.htm). This document has been elaborated, following a former suggestion by FET, by a committee of QIPC scientists to provide input towards the European Commission for the preparation of the Seventh Framework Program. Besides being a document addressed to policy makers and funding agencies (both at the European and national level), the document contains a detailed scientific assessment of the state-of-the-art, main research goals, challenges, strengths, weaknesses, visions and perspectives of all the most relevant QIPC sub-fields, that we report here}, language = {en} } @article{MariKielingNielsenetal.2011, author = {Mari, Andrea and Kieling, Konrad and Nielsen, B. Melholt and Polzik, E. S. and Eisert, Jens}, title = {Directly estimating nonclassicality}, series = {Physical review letters}, volume = {106}, journal = {Physical review letters}, number = {1}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.106.010403}, pages = {4}, year = {2011}, abstract = {We establish a method of directly measuring and estimating nonclassicality-operationally defined in terms of the distinguishability of a given state from one with a positive Wigner function. It allows us to certify nonclassicality, based on possibly much fewer measurement settings than necessary for obtaining complete tomographic knowledge, and is at the same time equipped with a full certificate. We find that even from measuring two conjugate variables alone, one may infer the nonclassicality of quantum mechanical modes. This method also provides a practical tool to eventually certify such features in mechanical degrees of freedom in opto-mechanics. The proof of the result is based on Bochner's theorem characterizing classical and quantum characteristic functions and on semidefinite programming. In this joint theoretical-experimental work we present data from experimental optical Fock state preparation.}, language = {en} }