@article{FormerWagnerRichertetal.1999, author = {Former, C. and Wagner, H. and Richert, R. and Neher, Dieter and M{\"u}llen, K.}, title = {Orientation and dynamics of chainlike dipole arrays: Donor-acceptor-substituted oligophenylenevinylenes in a polymer matrix}, year = {1999}, language = {en} } @article{TockhornSutterCruzBournazouetal.2022, author = {Tockhorn, Philipp and Sutter, Johannes and Cruz Bournazou, Alexandros and Wagner, Philipp and J{\"a}ger, Klaus and Yoo, Danbi and Lang, Felix and Grischek, Max and Li, Bor and Li, Jinzhao and Shargaieva, Oleksandra and Unger, Eva and Al-Ashouri, Amran and K{\"o}hnen, Eike and Stolterfoht, Martin and Neher, Dieter and Schlatmann, Rutger and Rech, Bernd and Stannowski, Bernd and Albrecht, Steve and Becker, Christiane}, title = {Nano-optical designs for high-efficiency monolithic perovskite-silicon tandem solar cells}, series = {Nature nanotechnology}, volume = {17}, journal = {Nature nanotechnology}, number = {11}, publisher = {Nature Publishing Group}, address = {London [u.a.]}, issn = {1748-3387}, doi = {10.1038/s41565-022-01228-8}, pages = {1214 -- 1221}, year = {2022}, abstract = {Designing gentle sinusoidal nanotextures enables the realization of high-efficiency perovskite-silicon solar cells
Perovskite-silicon tandem solar cells offer the possibility of overcoming the power conversion efficiency limit of conventional silicon solar cells. Various textured tandem devices have been presented aiming at improved optical performance, but optimizing film growth on surface-textured wafers remains challenging. Here we present perovskite-silicon tandem solar cells with periodic nanotextures that offer various advantages without compromising the material quality of solution-processed perovskite layers. We show a reduction in reflection losses in comparison to planar tandems, with the new devices being less sensitive to deviations from optimum layer thicknesses. The nanotextures also enable a greatly increased fabrication yield from 50\% to 95\%. Moreover, the open-circuit voltage is improved by 15 mV due to the enhanced optoelectronic properties of the perovskite top cell. Our optically advanced rear reflector with a dielectric buffer layer results in reduced parasitic absorption at near-infrared wavelengths. As a result, we demonstrate a certified power conversion efficiency of 29.80\%.}, language = {en} } @article{PeterWenderingSchlickeiseretal.2022, author = {Peter, Lena and Wendering, D{\´e}sir{\´e}e Jacqueline and Schlickeiser, Stephan and Hoffmann, Henrike and Noster, Rebecca and Wagner, Dimitrios Laurin and Zarrinrad, Ghazaleh and M{\"u}nch, Sandra and Picht, Samira and Schulenberg, Sarah and Moradian, Hanieh and Mashreghi, Mir-Farzin and Klein, Oliver and Gossen, Manfred and Roch, Toralf and Babel, Nina and Reinke, Petra and Volk, Hans-Dieter and Amini, Leila and Schmueck-Henneresse, Michael}, title = {Tacrolimus-resistant SARS-CoV-2-specific T cell products to prevent and treat severe COVID-19 in immunosuppressed patients}, series = {Molecular therapy methods and clinical development}, volume = {25}, journal = {Molecular therapy methods and clinical development}, publisher = {Cell Press}, address = {Cambridge}, issn = {2329-0501}, doi = {10.1016/j.omtm.2022.02.012}, pages = {52 -- 73}, year = {2022}, abstract = {Solid organ transplant (SOT) recipients receive therapeutic immunosuppression that compromises their immune response to infections and vaccines. For this reason, SOT patients have a high risk of developing severe coronavirus disease 2019 (COVID-19) and an increased risk of death from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Moreover, the efficiency of immunotherapies and vaccines is reduced due to the constant immunosuppression in this patient group. Here, we propose adoptive transfer of SARS-CoV-2-specific T cells made resistant to a common immunosuppressant, tacrolimus, for optimized performance in the immunosuppressed patient. Using a ribonucleoprotein approach of CRISPR-Cas9 technology, we have generated tacrolimus-resistant SARS-CoV-2-specific T cell products from convalescent donors and demonstrate their specificity and function through characterizations at the single-cell level, including flow cytometry, single-cell RNA (scRNA) Cellular Indexing of Transcriptomes and Epitopes (CITE), and T cell receptor (TCR) sequencing analyses. Based on the promising results, we aim for clinical validation of this approach in transplant recipients. Additionally, we propose a combinatory approach with tacrolimus, to prevent an overshooting immune response manifested as bystander T cell activation in the setting of severe COVID-19 immunopathology, and tacrolimus-resistant SARS-CoV-2-specific T cell products, allowing for efficient clearance of viral infection. Our strategy has the potential to prevent severe COVID-19 courses in SOT or autoimmunity settings and to prevent immunopathology while providing viral clearance in severe non-transplant COVID-19 cases.}, language = {en} } @article{LangKoehnenWarbyetal.2021, author = {Lang, Felix and K{\"o}hnen, Eike and Warby, Jonathan and Xu, Ke and Grischek, Max and Wagner, Philipp and Neher, Dieter and Korte, Lars and Albrecht, Steve and Stolterfoht, Martin}, title = {Revealing fundamental efficiency limits of monolithic perovskite/silicon tandem photovoltaics through subcell characterization}, series = {ACS Energy Letters}, volume = {6}, journal = {ACS Energy Letters}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {2380-8195}, doi = {10.1021/acsenergylett.1c01783}, pages = {3982 -- 3991}, year = {2021}, abstract = {Perovskite/silicon tandem photovoltaics (PVs) promise to accelerate the decarbonization of our energy systems. Here, we present a thorough subcell diagnosis methodology to reveal deep insights into the practical efficiency limitations of state-of-the-art perovskite/silicon tandem PVs. Our subcell selective intensity-dependent photoluminescence (PL) and injection-dependent electroluminescence (EL) measurements allow independent assessment of pseudo-V-OC and power conversion efficiencies (PCEs) for both subcells. We reveal identical metrics from PL and EL, which implies well-aligned energy levels throughout the entire cell. Relatively large ideality factors and insufficient charge extraction, however, cause each a fill factor penalty of about 6\% (absolute). Using partial device stacks, we then identify significant losses in standard perovskite subcells due to bulk and interfacial recombination. Lastly, we present strategies to minimize these losses using triple halide (CsFAPb(IBrCI)(3)) based perovskites. Our results give helpful feedback for device development and lay the foundation toward advanced perovskite/silicon tandem PVs capable of exceeding 33\% PCE.}, language = {en} } @book{SchmidtUlrichBuechneretal.2024, author = {Schmidt, Thorsten Ingo and Ulrich, Peter and B{\"u}chner, Christiane and Franzke, Jochen and Jann, Werner and Bauer, Hartmut and Wagner, Dieter and Br{\"u}ning, Christoph and Bickenbach, Christian and Kuhlmann, Sabine and Peters, Niklas and Reichard, Christoph and Tessmann, Jens and Maaß, Christian and Kern, Kristine and Kochsk{\"a}mper, Elisa and Gailing, Ludger and Krzymuski, Marcin}, title = {Kommunalwissenschaften an der Universit{\"a}t Potsdam}, series = {KWI-Schriften}, journal = {KWI-Schriften}, number = {15}, editor = {Schmidt, Thorsten Ingo and Bickenbach, Christian and Gronewold, Ulfert and Kuhlmann, Sabine and Ulrich, Peter}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-581-1}, issn = {1867-951X}, doi = {10.25932/publishup-63618}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-636180}, publisher = {Universit{\"a}t Potsdam}, pages = {124}, year = {2024}, abstract = {Zum dreißigj{\"a}hrigen Bestehen des Kommunalwissenschaftlichen Instituts an der Universit{\"a}t Potsdam vereint dieser Jubil{\"a}umsband kurze Aufs{\"a}tze von ehemaligen und aktuellen Vorstandsmitgliedern, von Ehrenmitgliedern des Vorstands, langj{\"a}hrigen wissenschaftlichen Mitarbeitern des Instituts und aktuellen wissenschaftlichen Kooperationspartnern. Die insgesamt zw{\"o}lf Beitr{\"a}ge befassen sich mit den Kommunalwissenschaften und der Geschichte des Kommunalwissenschaftlichen Instituts, mit aktuellen kommunalwissenschaftlichen Fragestellungen und wissenschaftlichen Kooperationen des KWI. Der vom KWI-Vorstand herausgegebene Band soll einen breiten Blick auf 30 Jahre Kommunalwissenschaften in Brandenburg und an der Universit{\"a}t Potsdam werfen und einen Ausblick auf zuk{\"u}nftige kommunalwissenschaftliche Forschung geben.}, language = {de} }