@article{BalderjahnMuellerBorketal.2000, author = {Balderjahn, Ingo and M{\"u}ller, Klaus and Bork, Hans-Rudolf and Petersen, Hans-Georg and Schultz, Peter and Soyez, Konrad and Thr{\"a}n, Daniela}, title = {Umweltforschung f{\"u}r das Land Brandenburg}, series = {Brandenburgische Umwelt-Berichte : BUB ; Schriftenreihe der Mathematisch-Naturwissenschaftlichen Fakult{\"a}t der Universit{\"a}t Potsdam}, volume = {8}, journal = {Brandenburgische Umwelt-Berichte : BUB ; Schriftenreihe der Mathematisch-Naturwissenschaftlichen Fakult{\"a}t der Universit{\"a}t Potsdam}, issn = {1434-2375}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-3854}, pages = {54 -- 78}, year = {2000}, abstract = {BALDERJAHN, I.; KRUEGER, C.: Produkte und Prozesse mit dem Ziel Nachhaltigkeit Teilprojekt: "Marketing, Kommunikation, Informationsmanagement" ; M{\"U}LLER, K. et al: Ans{\"a}tze f{\"u}r eine dauerhaft umweltgerechte landwirtschaftliche Produktion: Modellgebiet Nordost-Deutschland (GRANO) ; PETERSEN, H.-G.; M{\"U}LLER, K.: GRANO - Projektbereich 1: Dezentrale Bewertungs- und Koordinationsmechanismen - Teilprojekt 2: Honorierung {\"o}kologischer Leistungen ; SCHULTZ, P.; SOYEZ, K.: Der {\"o}kologische Friedhof - Ein Ort des Lebens ; THR{\"A}N, D.: Nachhaltiges Stoffstrommanagement l{\"a}ndlich strukturschwacher Regionen}, language = {de} } @phdthesis{Mueller2022, author = {M{\"u}ller, Daniela}, title = {Abrupt climate changes and extreme events in two different varved lake sediment records}, doi = {10.25932/publishup-55833}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-558331}, school = {Universit{\"a}t Potsdam}, pages = {XVIII, 209}, year = {2022}, abstract = {Different lake systems might reflect different climate elements of climate changes, while the responses of lake systems are also divers, and are not completely understood so far. Therefore, a comparison of lakes in different climate zones, during the high-amplitude and abrupt climate fluctuations of the Last Glacial to Holocene transition provides an exceptional opportunity to investigate distinct natural lake system responses to different abrupt climate changes. The aim of this doctoral thesis was to reconstruct climatic and environmental fluctuations down to (sub-) annual resolution from two different lake systems during the Last Glacial-Interglacial transition (~17 and 11 ka). Lake Gościąż, situated in the temperate central Poland, developed in the Aller{\o}d after recession of the Last Glacial ice sheets. The Dead Sea is located in the Levant (eastern Mediterranean) within a steep gradient from sub-humid to hyper-arid climate, and formed in the mid-Miocene. Despite their differences in sedimentation processes, both lakes form annual laminations (varves), which are crucial for studies of abrupt climate fluctuations. This doctoral thesis was carried out within the DFG project PALEX-II (Paleohydrology and Extreme Floods from the Dead Sea ICDP Core) that investigates extreme hydro-meteorological events in the ICDP core in relation to climate changes, and ICLEA (Virtual Institute of Integrated Climate and Landscape Evolution Analyses) that intends to better the understanding of climate dynamics and landscape evolutions in north-central Europe since the Last Glacial. Further, it contributes to the Helmholtz Climate Initiative REKLIM (Regional Climate Change and Humans) Research Theme 3 "Extreme events across temporal and spatial scales" that investigates extreme events using climate data, paleo-records and model-based simulations. The three main aims were to (1) establish robust chronologies of the lakes, (2) investigate how major and abrupt climate changes affect the lake systems, and (3) to compare the responses of the two varved lakes to these hemispheric-scale climate changes. Robust chronologies are a prerequisite for high-resolved climate and environmental reconstructions, as well as for archive comparisons. Thus, addressing the first aim, the novel chronology of Lake Gościąż was established by microscopic varve counting and Bayesian age-depth modelling in Bacon for a non-varved section, and was corroborated by independent age constrains from 137Cs activity concentration measurements, AMS radiocarbon dating and pollen analysis. The varve chronology reaches from the late Aller{\o}d until AD 2015, revealing more Holocene varves than a previous study of Lake Gościąż suggested. Varve formation throughout the complete Younger Dryas (YD) even allowed the identification of annually- to decadal-resolved leads and lags in proxy responses at the YD transitions. The lateglacial chronology of the Dead Sea (DS) was thus far mainly based on radiocarbon and U/Th-dating. In the unique ICDP core from the deep lake centre, continuous search for cryptotephra has been carried out in lateglacial sediments between two prominent gypsum deposits - the Upper and Additional Gypsum Units (UGU and AGU, respectively). Two cryptotephras were identified with glass analyses that correlate with tephra deposits from the S{\"u}phan and Nemrut volcanoes indicating that the AGU is ~1000 years younger than previously assumed, shifting it into the YD, and the underlying varved interval into the B{\o}lling/Aller{\o}d, contradicting previous assumptions. Using microfacies analyses, stable isotopes and temperature reconstructions, the second aim was achieved at Lake Gościąż. The YD lake system was dynamic, characterized by higher aquatic bioproductivity, more re-suspended material and less anoxia than during the Aller{\o}d and Early Holocene, mainly influenced by stronger water circulation and catchment erosion due to stronger westerly winds and less lake sheltering. Cooling at the YD onset was ~100 years longer than the final warming, while environmental proxies lagged the onset of cooling by ~90 years, but occurred contemporaneously during the termination of the YD. Chironomid-based temperature reconstructions support recent studies indicating mild YD summer temperatures. Such a comparison of annually-resolved proxy responses to both abrupt YD transitions is rare, because most European lake archives do not preserve varves during the YD. To accomplish the second aim at the DS, microfacies analyses were performed between the UGU (~17 ka) and Holocene onset (~11 ka) in shallow- (Masada) and deep-water (ICDP core) environments. This time interval is marked by a huge but fluctuating lake level drop and therefore the complete transition into the Holocene is only recorded in the deep-basin ICDP core. In this thesis, this transition was investigated for the first time continuously and in detail. The final two pronounced lake level drops recorded by deposition of the UGU and AGU, were interrupted by one millennium of relative depositional stability and a positive water budget as recorded by aragonite varve deposition interrupted by only a few event layers. Further, intercalation of aragonite varves between the gypsum beds of the UGU and AGU shows that these generally dry intervals were also marked by decadal- to centennial-long rises in lake level. While continuous aragonite varves indicate decadal-long stable phases, the occurrence of thicker and more frequent event layers suggests general more instability during the gypsum units. These results suggest a pattern of complex and variable hydroclimate at different time scales during the Lateglacial at the DS. The third aim was accomplished based on the individual studies above that jointly provide an integrated picture of different lake responses to different climate elements of hemispheric-scale abrupt climate changes during the Last Glacial-Interglacial transition. In general, climatically-driven facies changes are more dramatic in the DS than at Lake Gościąż. Further, Lake Gościąż is characterized by continuous varve formation nearly throughout the complete profile, whereas the DS record is widely characterized by extreme event layers, hampering the establishment of a continuous varve chronology. The lateglacial sedimentation in Lake Gościąż is mainly influenced by westerly winds and minor by changes in catchment vegetation, whereas the DS is primarily influenced by changes in winter precipitation, which are caused by temperature variations in the Mediterranean. Interestingly, sedimentation in both archives is more stable during the B{\o}lling/Aller{\o}d and more dynamic during the YD, even when sedimentation processes are different. In summary, this doctoral thesis presents seasonally-resolved records from two lake archives during the Lateglacial (ca 17-11 ka) to investigate the impact of abrupt climate changes in different lake systems. New age constrains from the identification of volcanic glass shards in the lateglacial sediments of the DS allowed the first lithology-based interpretation of the YD in the DS record and its comparison to Lake Gościąż. This highlights the importance of the construction of a robust chronology, and provides a first step for synchronization of the DS with other eastern Mediterranean archives. Further, climate reconstructions from the lake sediments showed variability on different time scales in the different archives, i.e. decadal- to millennial fluctuations in the lateglacial DS, and even annual variations and sub-decadal leads and lags in proxy responses during the rapid YD transitions in Lake Gościąż. This showed the importance of a comparison of different lake archives to better understand the regional and local impacts of hemispheric-scale climate variability. An unprecedented example is demonstrated here of how different lake systems show different lake responses and also react to different climate elements of abrupt climate changes. This further highlights the importance of the understanding of the respective lake system for climate reconstructions.}, language = {en} } @article{MerksSwinarskiMeyeretal.2018, author = {Merks, Anne Margarete and Swinarski, Marie and Meyer, Alexander Matthias and M{\"u}ller, Nicola Victoria and {\"O}zcan, Ismail and Donat, Stefan and Burger, Alexa and Gilbert, Stephen and Mosimann, Christian and Abdelilah-Seyfried, Salim and Panakova, Daniela}, title = {Planar cell polarity signalling coordinates heart tube remodelling through tissue-scale polarisation of actomyosin activity}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-04566-1}, pages = {15}, year = {2018}, abstract = {Development of a multiple-chambered heart from the linear heart tube is inherently linked to cardiac looping. Although many molecular factors regulating the process of cardiac chamber ballooning have been identified, the cellular mechanisms underlying the chamber formation remain unclear. Here, we demonstrate that cardiac chambers remodel by cell neighbour exchange of cardiomyocytes guided by the planar cell polarity (PCP) pathway triggered by two non-canonical Wnt ligands, Wnt5b and Wnt11. We find that PCP signalling coordinates the localisation of actomyosin activity, and thus the efficiency of cell neighbour exchange. On a tissue-scale, PCP signalling planar-polarises tissue tension by restricting the actomyosin contractility to the apical membranes of outflow tract cells. The tissue-scale polarisation of actomyosin contractility is required for cardiac looping that occurs concurrently with chamber ballooning. Taken together, our data reveal that instructive PCP signals couple cardiac chamber expansion with cardiac looping through the organ-scale polarisation of actomyosin-based tissue tension.}, language = {en} } @article{MuellerTjallingiiPlocienniketal.2021, author = {M{\"u}ller, Daniela and Tjallingii, Rik and Plociennik, Mateusz and Luoto, Tomi P. and Kotrys, Bartosz and Plessen, Birgit and Ramisch, Arne and Schwab, Markus Julius and Blaszkiewicz, Miroslaw and Slowinski, Michal and Brauer, Achim}, title = {New insights into lake responses to rapid climate change}, series = {Boreas}, volume = {50}, journal = {Boreas}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0300-9483}, doi = {10.23689/fidgeo-4033}, pages = {535 -- 555}, year = {2021}, abstract = {The sediment profile from Lake Goscia(z) over dot in central Poland comprises a continuous, seasonally resolved and exceptionally well-preserved archive of the Younger Dryas (YD) climate variation. This provides a unique opportunity for detailed investigation of lake system responses during periods of rapid climate cooling (YD onset) and warming (YD termination). The new varve record of Lake Goscia(z) over dot presented here spans 1662 years from the late Allerod (AL) to the early Preboreal (PB). Microscopic varve counting provides an independent chronology with a YD duration of 1149+14/-22 years, which confirms previous results of 1140 +/- 40 years. We link stable oxygen isotopes and chironomid-based air temperature reconstructions with the response of various geochemical and varve microfacies proxies especially focusing on the onset and termination of the YD. Cooling at the YD onset lasted similar to 180 years, which is about a century longer than the terminal warming that was completed in similar to 70 years. During the AL/YD transition, environmental proxy data lagged the onset of cooling by similar to 90 years and revealed an increase of lake productivity and internal lake re-suspension as well as slightly higher detrital sediment input. In contrast, rapid warming and environmental changes during the YD/PB transition occurred simultaneously. However, initial changes such as declining diatom deposition and detrital input occurred already a few centuries before the rapid warming at the YD/PB transition. These environmental changes likely reflect a gradual increase in summer air temperatures already during the YD. Our data indicate complex and differing environmental responses to the major climate changes related to the YD, which involve different proxy sensitivities and threshold processes.}, language = {en} } @misc{MerksSwinarskiMeyeretal.2018, author = {Merks, Anne Margarete and Swinarski, Marie and Meyer, Alexander Matthias and M{\"u}ller, Nicola Victoria and {\"O}zcan, Ismail and Donat, Stefan and Burger, Alexa and Gilbert, Stephen and Mosimann, Christian and Abdelilah-Seyfried, Salim and Pan{\´a}kov{\´a}, Daniela}, title = {Planar cell polarity signalling coordinates heart tube remodelling through tissue-scale polarisation of actomyosin activity}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {849}, issn = {1866-8372}, doi = {10.25932/publishup-42702}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427026}, pages = {17}, year = {2018}, abstract = {Development of a multiple-chambered heart from the linear heart tube is inherently linked to cardiac looping. Although many molecular factors regulating the process of cardiac chamber ballooning have been identified, the cellular mechanisms underlying the chamber formation remain unclear. Here, we demonstrate that cardiac chambers remodel by cell neighbour exchange of cardiomyocytes guided by the planar cell polarity (PCP) pathway triggered by two non-canonical Wnt ligands, Wnt5b and Wnt11. We find that PCP signalling coordinates the localisation of actomyosin activity, and thus the efficiency of cell neighbour exchange. On a tissue-scale, PCP signalling planar-polarises tissue tension by restricting the actomyosin contractility to the apical membranes of outflow tract cells. The tissue-scale polarisation of actomyosin contractility is required for cardiac looping that occurs concurrently with chamber ballooning. Taken together, our data reveal that instructive PCP signals couple cardiac chamber expansion with cardiac looping through the organ-scale polarisation of actomyosin-based tissue tension.}, language = {en} } @book{ThiekenBesselCallsenetal.2015, author = {Thieken, Annegret and Bessel, Tina and Callsen, Ines and Falter, Daniela and Hasan, Issa and Kienzler, Sarah and Kox, Thomas and Kreibich, Heidi and Kuhlicke, Christian and Kunz, Michael and Matthias, Max and Meyer, Volker and M{\"u}hr, Bernhard and M{\"u}ller, Meike and Otto, Antje and Pech, Ina and Petrow, Theresia and Pisi, Sebastian and Rother, Karl-Heinz and Schr{\"o}ter, Kai}, title = {Das Hochwasser im Juni 2013}, series = {Schriftenreihe des DKKV ; 53}, journal = {Schriftenreihe des DKKV ; 53}, publisher = {Deutsches Komitee Katastrophenvorsorge}, address = {Bonn}, isbn = {978-3-933181-62-6}, publisher = {Universit{\"a}t Potsdam}, pages = {207}, year = {2015}, language = {de} } @misc{MuellerTjallingiiPlocienniketal.2021, author = {M{\"u}ller, Daniela and Tjallingii, Rik and Plociennik, Mateusz and Luoto, Tomi P. and Kotrys, Bartosz and Plessen, Birgit and Ramisch, Arne and Schwab, Markus Julius and Blaszkiewicz, Miroslaw and Slowinski, Michal and Brauer, Achim}, title = {New insights into lake responses to rapid climate change}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {0300-9483}, doi = {10.25932/publishup-56338}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563386}, pages = {23}, year = {2021}, abstract = {The sediment profile from Lake Goscia(z) over dot in central Poland comprises a continuous, seasonally resolved and exceptionally well-preserved archive of the Younger Dryas (YD) climate variation. This provides a unique opportunity for detailed investigation of lake system responses during periods of rapid climate cooling (YD onset) and warming (YD termination). The new varve record of Lake Goscia(z) over dot presented here spans 1662 years from the late Allerod (AL) to the early Preboreal (PB). Microscopic varve counting provides an independent chronology with a YD duration of 1149+14/-22 years, which confirms previous results of 1140 +/- 40 years. We link stable oxygen isotopes and chironomid-based air temperature reconstructions with the response of various geochemical and varve microfacies proxies especially focusing on the onset and termination of the YD. Cooling at the YD onset lasted similar to 180 years, which is about a century longer than the terminal warming that was completed in similar to 70 years. During the AL/YD transition, environmental proxy data lagged the onset of cooling by similar to 90 years and revealed an increase of lake productivity and internal lake re-suspension as well as slightly higher detrital sediment input. In contrast, rapid warming and environmental changes during the YD/PB transition occurred simultaneously. However, initial changes such as declining diatom deposition and detrital input occurred already a few centuries before the rapid warming at the YD/PB transition. These environmental changes likely reflect a gradual increase in summer air temperatures already during the YD. Our data indicate complex and differing environmental responses to the major climate changes related to the YD, which involve different proxy sensitivities and threshold processes.}, language = {en} } @article{MuellerNeugebauerBenDoretal.2022, author = {M{\"u}ller, Daniela and Neugebauer, Ina and Ben Dor, Yoav and Enzel, Yehouda and Schwab, Markus Julius and Tjallingii, Rik and Brauer, Achim}, title = {Phases of stability during major hydroclimate change ending the Last Glacial in the Levant}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-10217-9}, pages = {12}, year = {2022}, abstract = {In-depth understanding of the reorganization of the hydrological cycle in response to global climate change is crucial in highly sensitive regions like the eastern Mediterranean, where water availability is a major factor for socioeconomic and political development. The sediments of Lake Lisan provide a unique record of hydroclimatic change during the last glacial to Holocene transition (ca. 24-11 ka) with its tremendous water level drop of similar to 240 m that finally led to its transition into the present hypersaline water body-the Dead Sea. Here we utilize high-resolution sedimentological analyses from the marginal terraces and deep lake to reconstruct an unprecedented seasonal record of the last millennia of Lake Lisan. Aragonite varve formation in intercalated intervals of our record demonstrates that a stepwise long-term lake level decline was interrupted by almost one millennium of rising or stable water level. Even periods of pronounced water level drops indicated by gypsum deposition were interrupted by decades of positive water budgets. Our results thus highlight that even during major climate change at the end of the last glacial, decadal to millennial periods of relatively stable or positive moisture supply occurred which could have been an important premise for human sedentism.}, language = {en} } @article{PłociennikZawiskaRzodkiewiczetal.2022, author = {Pł{\´o}ciennik, Mateusz and Zawiska, Izabela and Rzodkiewicz, Monika and Noryśkiewicz, Agnieszka M. and Słowiński, Michał and M{\"u}ller, Daniela and Brauer, Achim and Antczak-Orlewska, Olga and Kramkowski, Mateusz and Peyron, Odile and Nevalainen, Liisa and Luoto, Tomi P. and Kotrys, Bartosz and Sepp{\"a}, Heikki and Bidaurreta, Jon Camuera and Rudna, Marta and Mielczarek, Małgorzata and Zawisza, Edyta and Janowska, Ewa and Błaszkiewicz, Mirosław}, title = {Climatic and hydrological variability as a driver of the Lake Gościąż biota during the Younger Dryas}, series = {Catena}, volume = {212}, journal = {Catena}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2022.106049}, pages = {15}, year = {2022}, abstract = {The Younger Dryas (YD) is a roughly 1,100-year cold period marking the end of the last glaciation. Climate modelling for northern Europe indicates high summer temperatures and strong continentality. In eastern Europe, the scale of temperature variation and its influence on ecosystems is weakly recognised. Here, we present a multi-proxy reconstruction of YD conditions from Lake Gos ' ciaz (central Poland). The decadal-resolution analysis of its annually varved sediments indicates an initial decrease in Chironomidae-inferred mean July air temperature followed by steady warming. The pollen-inferred winter-to-summer temperature amplitude and annual precip-itation is highest at the Allerod/YD transition and the early YD (ca. 12.7-12.4 ky cal BP) and YD/Holocene (11.7-11.4 ka cal BP) transition. Temperature and precipitation were the main reasons for lake level fluctuations as reflected in the planktonic/littoral Cladocera ratio. The lake's diatom-inferred total phosphorus decreased with increasing summer temperature from about mid YD. Windy conditions in the early YD until ~12.3 ka cal BP caused water mixing and a short-lived/temporary increase in nutrient availability for phytoplankton. The Chironomidae-inferred summer temperature and pollen inferred summer temperature, winter temperature and annual precipitation herein are one of only a few in eastern Europe conducted with such high resolution.}, language = {en} }