@article{RosenkranzSchildgenWittmannetal.2017, author = {Rosenkranz, Ruben and Schildgen, Taylor F. and Wittmann, Hella and Spiegel, Cornelia}, title = {Coupling erosion and topographic development in the rainiest place on Earth}, series = {Earth \& planetary science letters}, volume = {483}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2017.11.047}, pages = {39 -- 51}, year = {2017}, abstract = {The uplift of the Shillong Plateau, in northeast India between the Bengal floodplain and the Himalaya Mountains, has had a significant impact on regional precipitation patterns, strain partitioning, and the path of the Brahmaputra River. Today, the plateau receives the highest measured yearly rainfall in the world and is tectonically active, having hosted one of the strongest intra-plate earthquakes ever recorded. Despite the unique tectonic and climatic setting of this prominent landscape feature, its exhumation and surface uplift history are poorly constrained. We collected 14 detrital river sand and 3 bedrock samples from the southern margin of the Shillong Plateau to measure erosion rates using the terrestrial cosmogenic nuclide 10Be. The calculated bedrock erosion rates range from 2.0 to 5.6 m My-1, whereas catchment average erosion rates from detrital river sands range from 48 to 214 m My-1. These rates are surprisingly low in the context of steep, tectonically active slopes and extreme rainfall. Moreover, the highest among these rates, which occur on the low-relief plateau surface, appear to have been affected by anthropogenic land-use change. To determine the onset of surface uplift, we coupled the catchment averaged erosion rates with topographic analyses of the plateau's southern margin. We interpolated an inclined, pre-incision surface from minimally eroded remnants along the valley interfluves and calculated the eroded volume of the valleys carved beneath the surface. The missing volume was then divided by the volume flux derived from the erosion rates to obtain the onset of uplift. The results of this calculation, ranging from 3.0 to 5.0 Ma for individual valleys, are in agreement with several lines of stratigraphic evidence from the Brahmaputra and Bengal basin that constrain the onset of topographic uplift, specifically the onset of flexural loading and the transgression from deltaic to marine deposition. Ultimately, our data corroborate the hypothesis that surface uplift was decoupled from the onset of rapid exhumation, which occurred several millions of years earlier.}, language = {en} } @article{EllingSpiegelEstradaetal.2016, author = {Elling, Felix J. and Spiegel, Cornelia and Estrada, Solveig and Davis, Donald W. and Reinhardt, Lutz and Henjes-Kunst, Friedhelm and Allroggen, Niklas and Dohrmann, Reiner and Piepjohn, Karsten and Lisker, Frank}, title = {Origin of Bentonites and Detrital Zircons of the Paleocene Basilika Formation, Svalbard}, series = {Frontiers in Earth Science}, volume = {4}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2016.00073}, pages = {23}, year = {2016}, abstract = {The Paleocene was a time of transition for the Arctic, with magmatic activity of the High Arctic Large Igneous Province (HALIP) giving way to magmatism of the North Atlantic Large Igneous Province in connection to plate tectonic changes in the Arctic and North Atlantic. In this study we investigate the Paleocene magmatic record and sediment pathways of the Basilika Formation exposed in the Central Tertiary Basin of Svalbard. By means of geochemistry, SmNd isotopic signatures, and zircon UPb geochronology we investigate the characteristics of several bentonite layers contained in the Basilika Formation, as well as the provenance of the intercalated clastic sediments. Our data show that the volcanic ash layers of the Basilika Formation, which were diagenetically altered to bentonites, originate from alkaline continental-rift magmatism such as the last, explosive stages of the HALIP in North Greenland and the Canadian Arctic. The volcanic ash layers were deposited on Svalbard in a flat shelf environment with dominant sediment supply from the east. Dating of detrital zircons suggests that the detritus was derived from Siberian sources, primarily from the Verkhoyansk Fold-and-Thrust Belt, which would require transport over similar to 3000 km across the Arctic.}, language = {en} }