@article{WehePieperHoltkampetal.2014, author = {Wehe, Christoph A. and Pieper, Imke and Holtkamp, Michael and Thyssen, Georgina M. and Sperling, Michael and Schwerdtle, Tanja and Karst, Uwe}, title = {On-line species-unspecific isotope dilution analysis in the picomolar range reveals the time- and species-depending mercury uptake in human astrocytes}, series = {Analytical \& bioanalytical chemistry}, volume = {406}, journal = {Analytical \& bioanalytical chemistry}, number = {7}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-013-7608-4}, pages = {1909 -- 1916}, year = {2014}, abstract = {In order to reveal the time-depending mercury species uptake by human astrocytes, a novel approach for total mercury analysis is presented, which uses an accelerated sample introduction system combined on-line with an inductively coupled plasma mass spectrometer equipped with a collision/reaction cell. Human astrocyte samples were incubated with inorganic mercury (HgCl2), methylmercury chloride (MeHgCl), and thimerosal. After 1-h incubation with Hg2+, cellular concentrations of 3 mu M were obtained, whereas for organic species, concentrations of 14-18 mu M could be found. After 24 h, a cellular accumulation factor of 0.3 was observed for the cells incubated with Hg2+, whereas the organic species both showed values of about 5. Due to the obtained steady-state signals, reliable results with relative standard deviations of well below 5 \% and limits of detection in the concentration range of 1 ng L-1 were obtained using external calibration and species-unspecific isotope dilution analysis approaches. The results were further validated using atomic fluorescence spectrometry.}, language = {en} } @article{BanerjiThyssenPampeletal.2021, author = {Banerji, Amitabh and Thyssen, Christoph and Pampel, Barbara and Huwer, Johannes}, title = {Naturwissenschaftsunterricht und Informatik}, series = {Chemie konkret : CHEMKON ; Forum f{\"u}r Unterricht und Didaktik}, volume = {28}, journal = {Chemie konkret : CHEMKON ; Forum f{\"u}r Unterricht und Didaktik}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0944-5846}, doi = {10.1002/ckon.202100008}, pages = {263 -- 265}, year = {2021}, abstract = {Computer literacy plays an increasingly important role in the education of 21st-century society. For chemistry' education. this results in two aspects: On the one hand. informatics education concepts can help to promote chemistry- and science-specific ways of thinking and working. On the other hand, chemistry education can contribute to information education. This paper addresses both aspects and tries to point out the Mutual benefits of informatics education and science education with regards to chemistry lessons.}, language = {de} }