@article{FagesHanghojKhanetal.2019, author = {Fages, Antoine and Hanghoj, Kristian and Khan, Naveed and Gaunitz, Charleen and Seguin-Orlando, Andaine and Leonardi, Michela and Constantz, Christian McCrory and Gamba, Cristina and Al-Rasheid, Khaled A. S. and Albizuri, Silvia and Alfarhan, Ahmed H. and Allentoft, Morten and Alquraishi, Saleh and Anthony, David and Baimukhanov, Nurbol and Barrett, James H. and Bayarsaikhan, Jamsranjav and Benecke, Norbert and Bernaldez-Sanchez, Eloisa and Berrocal-Rangel, Luis and Biglari, Fereidoun and Boessenkool, Sanne and Boldgiv, Bazartseren and Brem, Gottfried and Brown, Dorcas and Burger, Joachim and Crubezy, Eric and Daugnora, Linas and Davoudi, Hossein and Damgaard, Peter de Barros and de Chorro y de Villa-Ceballos, Maria de los Angeles and Deschler-Erb, Sabine and Detry, Cleia and Dill, Nadine and Oom, Maria do Mar and Dohr, Anna and Ellingvag, Sturla and Erdenebaatar, Diimaajav and Fathi, Homa and Felkel, Sabine and Fernandez-Rodriguez, Carlos and Garcia-Vinas, Esteban and Germonpre, Mietje and Granado, Jose D. and Hallsson, Jon H. and Hemmer, Helmut and Hofreiter, Michael and Kasparov, Aleksei and Khasanov, Mutalib and Khazaeli, Roya and Kosintsev, Pavel and Kristiansen, Kristian and Kubatbek, Tabaldiev and Kuderna, Lukas and Kuznetsov, Pavel and Laleh, Haeedeh and Leonard, Jennifer A. and Lhuillier, Johanna and von Lettow-Vorbeck, Corina Liesau and Logvin, Andrey and Lougas, Lembi and Ludwig, Arne and Luis, Cristina and Arruda, Ana Margarida and Marques-Bonet, Tomas and Silva, Raquel Matoso and Merz, Victor and Mijiddorj, Enkhbayar and Miller, Bryan K. and Monchalov, Oleg and Mohaseb, Fatemeh A. and Morales, Arturo and Nieto-Espinet, Ariadna and Nistelberger, Heidi and Onar, Vedat and Palsdottir, Albina H. and Pitulko, Vladimir and Pitskhelauri, Konstantin and Pruvost, Melanie and Sikanjic, Petra Rajic and Papesa, Anita Rapan and Roslyakova, Natalia and Sardari, Alireza and Sauer, Eberhard and Schafberg, Renate and Scheu, Amelie and Schibler, Jorg and Schlumbaum, Angela and Serrand, Nathalie and Serres-Armero, Aitor and Shapiro, Beth and Seno, Shiva Sheikhi and Shevnina, Irina and Shidrang, Sonia and Southon, John and Star, Bastiaan and Sykes, Naomi and Taheri, Kamal and Taylor, William and Teegen, Wolf-Rudiger and Vukicevic, Tajana Trbojevic and Trixl, Simon and Tumen, Dashzeveg and Undrakhbold, Sainbileg and Usmanova, Emma and Vahdati, Ali and Valenzuela-Lamas, Silvia and Viegas, Catarina and Wallner, Barbara and Weinstock, Jaco and Zaibert, Victor and Clavel, Benoit and Lepetz, Sebastien and Mashkour, Marjan and Helgason, Agnar and Stefansson, Kari and Barrey, Eric and Willerslev, Eske and Outram, Alan K. and Librado, Pablo and Orlando, Ludovic}, title = {Tracking five millennia of horse management with extensive ancient genome time series}, series = {Cell}, volume = {177}, journal = {Cell}, number = {6}, publisher = {Cell Press}, address = {Cambridge}, issn = {0092-8674}, doi = {10.1016/j.cell.2019.03.049}, pages = {1419 -- 1435}, year = {2019}, abstract = {Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (>= 1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modem legacy of past equestrian civilisations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse lineages increased following the Islamic conquests in Europe and Asia. Multiple alleles associated with elite-racing, including at the MSTN "speed gene," only rose in popularity within the last millennium. Finally, the development of modem breeding impacted genetic diversity more dramatically than the previous millennia of human management.}, language = {en} } @unpublished{ConfortiLeonardMurretal.2014, author = {Conforti, Giovanni and L{\´e}onard, Christian and Murr, R{\"u}diger and Roelly, Sylvie}, title = {Bridges of Markov counting processes : reciprocal classes and duality formulas}, volume = {3}, number = {9}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71855}, pages = {12}, year = {2014}, abstract = {Processes having the same bridges are said to belong to the same reciprocal class. In this article we analyze reciprocal classes of Markov counting processes by identifying their reciprocal invariants and we characterize them as the set of counting processes satisfying some duality formula.}, language = {en} } @unpublished{KleinLeonardRosenberger2012, author = {Klein, Markus and L{\´e}onard, Christian and Rosenberger, Elke}, title = {Agmon-type estimates for a class of jump processes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-56995}, year = {2012}, abstract = {In the limit we analyze the generators of families of reversible jump processes in the n-dimensional space associated with a class of symmetric non-local Dirichlet forms and show exponential decay of the eigenfunctions. The exponential rate function is a Finsler distance, given as solution of certain eikonal equation. Fine results are sensitive to the rate functions being twice differentiable or just Lipschitz. Our estimates are similar to the semiclassical Agmon estimates for differential operators of second order. They generalize and strengthen previous results on the lattice.}, language = {en} } @unpublished{LeonardRoellyZambrini2013, author = {L{\´e}onard, Christian and Roelly, Sylvie and Zambrini, Jean-Claude}, title = {Temporal symmetry of some classes of stochastic processes}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64599}, year = {2013}, abstract = {In this article we analyse the structure of Markov processes and reciprocal processes to underline their time symmetrical properties, and to compare them. Our originality consists in adopting a unifying approach of reciprocal processes, independently of special frameworks in which the theory was developped till now (diffusions, or pure jump processes). This leads to some new results, too.}, language = {en} } @article{KleinLeonardRosenberger2014, author = {Klein, Markus and Leonard, Christian and Rosenberger, Elke}, title = {Agmon-type estimates for a class of jump processes}, series = {Mathematische Nachrichten}, volume = {287}, journal = {Mathematische Nachrichten}, number = {17-18}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0025-584X}, doi = {10.1002/mana.201200324}, pages = {2021 -- 2039}, year = {2014}, abstract = {In the limit 0 we analyse the generators H of families of reversible jump processes in Rd associated with a class of symmetric non-local Dirichlet-forms and show exponential decay of the eigenfunctions. The exponential rate function is a Finsler distance, given as solution of a certain eikonal equation. Fine results are sensitive to the rate function being C2 or just Lipschitz. Our estimates are analogous to the semiclassical Agmon estimates for differential operators of second order. They generalize and strengthen previous results on the lattice Zd. Although our final interest is in the (sub)stochastic jump process, technically this is a pure analysis paper, inspired by PDE techniques.}, language = {en} } @article{ConfortiLeonardMurretal.2015, author = {Conforti, Giovanni and Leonard, Christian and Murr, R{\"u}diger and Roelly, Sylvie}, title = {Bridges of Markov counting processes. Reciprocal classes and duality formulas}, series = {Electronic communications in probability}, volume = {20}, journal = {Electronic communications in probability}, publisher = {Univ. of Washington, Mathematics Dep.}, address = {Seattle}, issn = {1083-589X}, doi = {10.1214/ECP.v20-3697}, pages = {12}, year = {2015}, abstract = {Processes sharing the same bridges are said to belong to the same reciprocal class. In this article we analyze reciprocal classes of Markov counting processes by identifying their reciprocal invariants and we characterize them as the set of counting processes satisfying some duality formula.}, language = {en} }