@book{HoltmannHoltmannGoerletal.2004, author = {Holtmann, Dieter and Holtmann, Elisabeth and G{\"o}rl, Tilo and Goltz, Elke and Fischer, Ulrike and Janeczka, Ines and Jacobi, Lena and Otto, Christian and Klauß, Christian and Hoffmann, Juliane and Tinsner, Karen and Patzwald, Claudia and Buchheister, Claudia and Bsdok, Ursula and Christ, Mirja and Elsner, Anne and Hagenm{\"u}ller, Jan-Peter and Kellner, Andreas}, title = {Gewalt und Fremdenfeindlichkeit : Erkl{\"a}rungsfaktoren sowie Handlungsempfehlungen zu den kriminalpr{\"a}ventiven und zivilgesellschaftlichen Potentialen}, publisher = {Landespr{\"a}ventionsrat Potsdam}, address = {Potsdam}, pages = {76 S.}, year = {2004}, language = {de} } @article{AnklamBehlerDingermannetal.2013, author = {Anklam, Elke and Behler, J{\"o}rg and Dingermann, Theodor and Elsinghorst, Paul and Fischer, Jochen and Esselen, Melanie and Foerster, Christian and Fr{\"o}hlich, Daniel and Goedel, Werner Andreas and Gregory, Peter and Grimme, Stefan and Hackenberger, Christian and Hansmann, Max and Heppekausen, Johannes and Hasenstab-Riedel, Sebastian and Kirchhoff, Erhard and Kratz, Karl-Ludwig and Krausz, Ferenc and Linker, Torsten and List, Benjamin and Ray, Kallol and Salzer, Reiner and Schubert, Ulrich and Schueth, Ferdi and Schwarz, Helmut and Schwietzke, Uta and Strey, Reinhard and Stumpf, Thorsten and Vaagt, Franziska and Volodkin, Dmitry and Wilke, Guenther and Zass, Engelbert and Zemb, Thomas}, title = {Awards}, series = {Nachrichten aus der Chemie : Zeitschrift der Gesellschaft Deutscher Chemiker}, volume = {61}, journal = {Nachrichten aus der Chemie : Zeitschrift der Gesellschaft Deutscher Chemiker}, number = {11}, publisher = {Ges. Dt. Chemiker}, address = {Frankfurt, Main}, issn = {1439-9598}, doi = {10.1002/nadc.201390372}, pages = {1145 -- 1148}, year = {2013}, language = {de} } @article{VockWeigandPreckeletal.2021, author = {Vock, Miriam and Weigand, Gabriele and Preckel, Franzis and Fischer, Christian and K{\"a}pnick, Friedhelm and Perleth, Christoph and Wollerstein, Werner}, title = {Wissenschaftlicher Hintergrund des LemaS-Projekts}, series = {Leistung macht Schule : F{\"o}rderung leistungsstarker und potenziell besonders leistungsf{\"a}higer Sch{\"u}lerinnen und Sch{\"u}ler}, journal = {Leistung macht Schule : F{\"o}rderung leistungsstarker und potenziell besonders leistungsf{\"a}higer Sch{\"u}lerinnen und Sch{\"u}ler}, edition = {2}, publisher = {Beltz}, address = {Weinheim}, isbn = {978-3-40725-883-0}, pages = {23 -- 30}, year = {2021}, language = {de} } @misc{GessingerBernerBoehmetal.1998, author = {Gessinger, Joachim and Berner, Elisabeth and B{\"o}hm, Manuela and Fischer, Christian and Schr{\"o}ter, Ullrich}, title = {Umgangssprache in Brandenburg}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000933}, year = {1998}, abstract = {Untersuchungsgebiet ist das heutige Bundesland Brandenburg. In diesem Raum werden von alters her germanische und slawische, seit dem Mittelalter a uch niederdeutsche (= plattdeutsche) und hochdeutsche Mundarten gesprochen. Mit der Industrialisierung im 19. Jahrhundert breitete sich die Stadtsprache Berlins als Umgangssprache auch in Brandenburg aus und trat vielerorts an die Stelle der alten Mundarten (= Dialekte). Dieser Vorgang dauert bis heute an. Das Forschungsprojekt soll seinen Stand Mitte der 90er Jahre erfassen und so Material f{\"u}r Vergleiche mit {\"a}lteren und mit zuk{\"u}nftigen Erhebungen liefern. Untersuchungsmethode: Erhebung sprachlicher Daten und Ermittlung von Einstellungen zur Sprache mittels eines Fragebogens, der in einer Auflage von 8.000 St{\"u}ck {\"u}ber Schulen, Pfarr{\"a}mter, Heimatpfleger, freiwillige Helfer und Studierende der Universit{\"a}t Potsdam im ganzen Land Brandenburg verteilt wurde. Im Februar 1996 wurden zudem in ausgew{\"a}hlten Regionen insgesamt 20 Tonbandaufnahmen von Sprechern unterschiedlicher Mundarten und auch des Berlinischen als aktueller Umgangssprache aufgezeichnet. Erhebungszeitraum: Pilotstudie 1994, Erhebung 1995, Nacherhebung und Sprachaufnahmen 1996}, language = {de} } @book{KloseKlostermannEngelmannetal.2006, author = {Klose, Dagmar and Klostermann, Anke and Engelmann, Anna-Maria and Jeltsch, Gesche and Dowall, Kathrin and Meyer, Georg and Glados, Andrea and Fischer, Raul and Hoffmann, Katrin and Kaiser, Christoph and Ladewig, Marco and Skouras, Andreas and Wienert, Christian and Wilkening, Gregor and Klaudius, Mathias and Goldbeck, Johanna and Duch, Sven and Werfel, Claudia and Viebig, Wenke and Neumann, Katharina and Dammnik, Sabine}, title = {Antike so fern und doch so nah}, editor = {Klose, Dagmar}, isbn = {978-3-939469-37-7}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-11179}, publisher = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Historisches Denken entwickeln am Gegenstand der altorientalischen,griechischen und r{\"o}mischen Antike, das ist Anliegen der didaktischen Handreichung f{\"u}r die gymnasiale Oberstufe. Didaktisch-methodische {\"U}berlegungen, Sachinformationen und ein handlungsorientierter Materialteil bieten f{\"u}r Lehrer und Sch{\"u}ler ein ideenreiches Angebot zur Auswahl f{\"u}r einen interessegeleiteten Geschichtsunterricht.}, language = {de} } @article{HolzmeierWolfGiengeretal.2018, author = {Holzmeier, Fabian and Wolf, Thomas J. A. and Gienger, Christian and Wagner, Isabella and Bozek, J. and Nandi, S. and Nicolas, C. and Fischer, Ingo and G{\"u}hr, Markus and Fink, Reinhold F.}, title = {Normal and resonant Auger spectroscopy of isocyanic acid, HNCO}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {149}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {3}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5030621}, pages = {13}, year = {2018}, abstract = {In this paper, we investigate HNCO by resonant and nonresonant Auger electron spectroscopy at the K-edges of carbon, nitrogen, and oxygen, employing soft X-ray synchrotron radiation. In comparison with the isosteric but linear CO2 molecule, spectra of the bent HNCO molecule are similar but more complex due to its reduced symmetry, wherein the degeneracy of the π-orbitals is lifted. Resonant Auger electron spectra are presented at different photon energies over the first core-excited 1s → 10a′ resonance. All Auger electron spectra are assigned based on ab initio configuration interaction computations combined with the one-center approximation for Auger intensities and moment theory to consider vibrational motion. The calculated spectra were scaled by a newly introduced energy scaling factor, and generally, good agreement is found between experiment and theory for normal as well as resonant Auger electron spectra. A comparison of resonant Auger spectra with nonresonant Auger structures shows a slight broadening as well as a shift of the former spectra between -8 and -9 eV due to the spectating electron. Since HNCO is a small molecule and contains the four most abundant atoms of organic molecules, the reported Auger electron decay spectra will provide a benchmark for further theoretical approaches in the computation of core electron spectra.}, language = {en} } @misc{HetenyiMolinariClintonetal.2018, author = {Hetenyi, Gyorgy and Molinari, Irene and Clinton, John and Bokelmann, Gotz and Bondar, Istvan and Crawford, Wayne C. and Dessa, Jean-Xavier and Doubre, Cecile and Friederich, Wolfgang and Fuchs, Florian and Giardini, Domenico and Graczer, Zoltan and Handy, Mark R. and Herak, Marijan and Jia, Yan and Kissling, Edi and Kopp, Heidrun and Korn, Michael and Margheriti, Lucia and Meier, Thomas and Mucciarelli, Marco and Paul, Anne and Pesaresi, Damiano and Piromallo, Claudia and Plenefisch, Thomas and Plomerova, Jaroslava and Ritter, Joachim and Rumpker, Georg and Sipka, Vesna and Spallarossa, Daniele and Thomas, Christine and Tilmann, Frederik and Wassermann, Joachim and Weber, Michael and Weber, Zoltan and Wesztergom, Viktor and Zivcic, Mladen and Abreu, Rafael and Allegretti, Ivo and Apoloner, Maria-Theresia and Aubert, Coralie and Besancon, Simon and de Berc, Maxime Bes and Brunel, Didier and Capello, Marco and Carman, Martina and Cavaliere, Adriano and Cheze, Jerome and Chiarabba, Claudio and Cougoulat, Glenn and Cristiano, Luigia and Czifra, Tibor and Danesi, Stefania and Daniel, Romuald and Dannowski, Anke and Dasovic, Iva and Deschamps, Anne and Egdorf, Sven and Fiket, Tomislav and Fischer, Kasper and Funke, Sigward and Govoni, Aladino and Groschl, Gidera and Heimers, Stefan and Heit, Ben and Herak, Davorka and Huber, Johann and Jaric, Dejan and Jedlicka, Petr and Jund, Helene and Klingen, Stefan and Klotz, Bernhard and Kolinsky, Petr and Kotek, Josef and Kuhne, Lothar and Kuk, Kreso and Lange, Dietrich and Loos, Jurgen and Lovati, Sara and Malengros, Deny and Maron, Christophe and Martin, Xavier and Massa, Marco and Mazzarini, Francesco and Metral, Laurent and Moretti, Milena and Munzarova, Helena and Nardi, Anna and Pahor, Jurij and Pequegnat, Catherine and Petersen, Florian and Piccinini, Davide and Pondrelli, Silvia and Prevolnik, Snjezan and Racine, Roman and Regnier, Marc and Reiss, Miriam and Salimbeni, Simone and Santulin, Marco and Scherer, Werner and Schippkus, Sven and Schulte-Kortnack, Detlef and Solarino, Stefano and Spieker, Kathrin and Stipcevic, Josip and Strollo, Angelo and Sule, Balint and Szanyi, Gyongyver and Szucs, Eszter and Thorwart, Martin and Ueding, Stefan and Vallocchia, Massimiliano and Vecsey, Ludek and Voigt, Rene and Weidle, Christian and Weyland, Gauthier and Wiemer, Stefan and Wolf, Felix and Wolyniec, David and Zieke, Thomas}, title = {The AlpArray seismic network}, series = {Surveys in Geophysics}, volume = {39}, journal = {Surveys in Geophysics}, number = {5}, publisher = {Springer}, address = {Dordrecht}, organization = {ETHZ SED Elect Lab AlpArray Seismic Network Team AlpArray OBS Cruise Crew AlpArray Working Grp}, issn = {0169-3298}, doi = {10.1007/s10712-018-9472-4}, pages = {1009 -- 1033}, year = {2018}, abstract = {The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.}, language = {en} } @article{SchallGossnerHeinrichsetal.2017, author = {Schall, Peter and Gossner, Martin M. and Heinrichs, Steffi and Fischer, Markus and Boch, Steffen and Prati, Daniel and Jung, Kirsten and Baumgartner, Vanessa and Blaser, Stefan and B{\"o}hm, Stefan and Buscot, Francois and Daniel, Rolf and Goldmann, Kezia and Kaiser, Kristin and Kahl, Tiemo and Lange, Markus and M{\"u}ller, J{\"o}rg Hans and Overmann, J{\"o}rg and Renner, Swen C. and Schulze, Ernst-Detlef and Sikorski, Johannes and Tschapka, Marco and T{\"u}rke, Manfred and Weisser, Wolfgang W. and Wemheuer, Bernd and Wubet, Tesfaye and Ammer, Christian}, title = {The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests}, series = {Journal of applied ecology : an official journal of the British Ecological Society}, volume = {55}, journal = {Journal of applied ecology : an official journal of the British Ecological Society}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0021-8901}, doi = {10.1111/1365-2664.12950}, pages = {267 -- 278}, year = {2017}, abstract = {1. For managed temperate forests, conservationists and policymakers favour fine-grained uneven-aged (UEA) management over more traditional coarse-grained even-aged (EA) management, based on the assumption that within-stand habitat heterogeneity enhances biodiversity. There is, however, little empirical evidence to support this assumption. We investigated for the first time how differently grained forest management systems affect the biodiversity of multiple above- and below-ground taxa across spatial scales. 2. We sampled 15 taxa of animals, plants, fungi and bacteria within the largest contiguous beech forest landscape of Germany and classified them into functional groups. Selected forest stands have been managed for more than a century at different spatial grains. The EA (coarse-grained management) and UEA (fine-grained) forests are comparable in spatial arrangement, climate and soil conditions. These were compared to forests of a nearby national park that have been unmanaged for at least 20years. We used diversity accumulation curves to compare -diversity for Hill numbers D-0 (species richness), D-1 (Shannon diversity) and D-2 (Simpson diversity) between the management systems. Beta diversity was quantified as multiple-site dissimilarity. 3. Gamma diversity was higher in EA than in UEA forests for at least one of the three Hill numbers for six taxa (up to 77\%), while eight showed no difference. Only bacteria showed the opposite pattern. Higher -diversity in EA forests was also found for forest specialists and saproxylic beetles. 4. Between-stand -diversity was higher in EA than in UEA forests for one-third (all species) and half (forest specialists) of all taxa, driven by environmental heterogeneity between age-classes, while -diversity showed no directional response across taxa or for forest specialists. 5. Synthesis and applications. Comparing EA and uneven-aged forest management in Central European beech forests, our results show that a mosaic of different age-classes is more important for regional biodiversity than high within-stand heterogeneity. We suggest reconsidering the current trend of replacing even-aged management in temperate forests. Instead, the variability of stages and stand structures should be increased to promote landscape-scale biodiversity.}, language = {en} } @article{PenoneAllanSoliveresetal.2019, author = {Penone, Caterina and Allan, Eric and Soliveres, Santiago and Felipe-Lucia, Maria R. and Gossner, Martin M. and Seibold, Sebastian and Simons, Nadja K. and Schall, Peter and van der Plas, Fons and Manning, Peter and Manzanedo, Ruben D. and Boch, Steffen and Prati, Daniel and Ammer, Christian and Bauhus, Juergen and Buscot, Francois and Ehbrecht, Martin and Goldmann, Kezia and Jung, Kirsten and Mueller, Joerg and Mueller, Joerg C. and Pena, Rodica and Polle, Andrea and Renner, Swen C. and Ruess, Liliane and Schoenig, Ingo and Schrumpf, Marion and Solly, Emily F. and Tschapka, Marco and Weisser, Wolfgang W. and Wubet, Tesfaye and Fischer, Markus}, title = {Specialisation and diversity of multiple trophic groups are promoted by different forest features}, series = {Ecology letters}, volume = {22}, journal = {Ecology letters}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.13182}, pages = {170 -- 180}, year = {2019}, abstract = {While forest management strongly influences biodiversity, it remains unclear how the structural and compositional changes caused by management affect different community dimensions (e.g. richness, specialisation, abundance or completeness) and how this differs between taxa. We assessed the effects of nine forest features (representing stand structure, heterogeneity and tree composition) on thirteen above- and belowground trophic groups of plants, animals, fungi and bacteria in 150 temperate forest plots differing in their management type. Canopy cover decreased light resources, which increased community specialisation but reduced overall diversity and abundance. Features increasing resource types and diversifying microhabitats (admixing of oaks and conifers) were important and mostly affected richness. Belowground groups responded differently to those aboveground and had weaker responses to most forest features. Our results show that we need to consider forest features rather than broad management types and highlight the importance of considering several groups and community dimensions to better inform conservation.}, language = {en} } @article{HeinrichsAmmerMundetal.2019, author = {Heinrichs, Steffi and Ammer, Christian and Mund, Martina and Boch, Steffen and Budde, Sabine and Fischer, Markus and Mueller, Joerg and Schoening, Ingo and Schulze, Ernst-Detlef and Schmidt, Wolfgang and Weckesser, Martin and Schall, Peter}, title = {Landscape-Scale Mixtures of Tree Species are More Effective than Stand-Scale Mixtures for Biodiversity of Vascular Plants, Bryophytes and Lichens}, series = {Forests}, volume = {10}, journal = {Forests}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {1999-4907}, doi = {10.3390/f10010073}, pages = {34}, year = {2019}, abstract = {Tree species diversity can positively affect the multifunctionality of forests. This is why conifer monocultures of Scots pine and Norway spruce, widely promoted in Central Europe since the 18th and 19th century, are currently converted into mixed stands with naturally dominant European beech. Biodiversity is expected to benefit from these mixtures compared to pure conifer stands due to increased abiotic and biotic resource heterogeneity. Evidence for this assumption is, however, largely lacking. Here, we investigated the diversity of vascular plants, bryophytes and lichens at the plot (alpha diversity) and at the landscape (gamma diversity) level in pure and mixed stands of European beech and conifer species (Scots pine, Norway spruce, Douglas fir) in four regions in Germany. We aimed to identify compositions of pure and mixed stands in a hypothetical forest landscape that can optimize gamma diversity of vascular plants, bryophytes and lichens within regions. Results show that gamma diversity of the investigated groups is highest when a landscape comprises different pure stands rather than tree species mixtures at the stand scale. Species mainly associated with conifers rely on light regimes that are only provided in pure conifer forests, whereas mixtures of beech and conifers are more similar to beech stands. Combining pure beech and pure conifer stands at the landscape scale can increase landscape level biodiversity and conserve species assemblages of both stand types, while landscapes solely composed of stand scale tree species mixtures could lead to a biodiversity reduction of a combination of investigated groups of 7 up to 20\%.}, language = {en} }