@book{AmbauenArnoldBeckeretal.2021, author = {Ambauen, Ladina and Arnold, Maren and Becker, Christian and Chahrour, Mohamed Chaker and Destanovic, Edis and Fretter, Alexandra and Geißler, Marc and Gr{\"u}nberg, Uwe and Habl, Moritz and Hoffmann, Sandra and Juchler, Ingo and Jurkatis, Lena Christine and Keitel, Bernhard and Losensky, Nikolai and Mrowietz, Christian and Nadol, Dominic and Naumann, Asja and Ockenga, Imke and Pohlandt, Anne and P{\"u}rschel, Tobias and Recktenwald, Michelle and Stephan, Roswitha and Tuchel, Johannes and Weinkamp, Christina and Weiß, Christian and Wiecking, Ole and Wockenfuß, Patricia and Zalitatsch, Nora Lina}, title = {Mildred Harnack und die Rote Kapelle in Berlin}, editor = {Juchler, Ingo}, edition = {2., verbesserte Auflage}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-500-2}, doi = {10.25932/publishup-48176}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-481762}, publisher = {Universit{\"a}t Potsdam}, pages = {170}, year = {2021}, abstract = {Mildred Harnack, geb. Fish, stammte urspr{\"u}nglich aus Milwaukee, Wisconsin. Zusammen mit ihrem Ehemann Arvid Harnack zog sie nach Deutschland und lebte seit 1930 in Berlin. Hier lehrte die Literaturwissenschaftlerin an der Friedrich-Wilhelms-Universit{\"a}t (heute Humboldt-Universit{\"a}t) und am Berliner Abendgymnasium (heute Peter A. Silbermann-Schule). Bereits kurz nach der Macht{\"u}bernahme von Adolf Hitler hatte sich um das Ehepaar Harnack ein Kreis von Freunden gebildet, der gegen die Herrschaft der Nationalsozialisten opponierte. Dazu z{\"a}hlten auch Karl Behrens und Bodo Schl{\"o}singer, die beide Sch{\"u}ler Mildred Harnacks am Berliner Abendgymnasium waren. Mildred Harnack konnte mit Hilfe ihrer Kontakte zur amerikanischen Botschaft ihren Sch{\"u}lern im nationalsozialistischen Deutschland ansonsten nicht zug{\"a}ngliche Informationen besorgen. Aufgrund von Funkkontakten des Freundeskreises zur Sowjetunion wurde die Gruppe von den Nationalsozialisten Rote Kapelle genannt - „rot" bezog sich auf deren linke Haltung und mit „Kapelle" wurden Funker assoziiert, die wie Pianisten in einer Kapelle spielen. Der Berliner Oppositionszirkel umfasste bis zu seiner Zerschlagung durch die Nationalsozialisten etwa 150 Personen verschiedenster Berufsgruppen, unterschiedlicher parteipolitischer Einstellungen und Konfessionen. Die Gruppe verfertigte oppositionelle Flugbl{\"a}tter und lieferte Informationen an die amerikanische Botschaft sowie an die Sowjetunion. Mildred Harnack wurde - wie viele ihrer Mitstreiterinnen und Mitstreiter - nach ihrer Verhaftung vom Reichskriegsgericht zum Tode verurteilt und am 16. Februar 1943 in Pl{\"o}tzensee guillotiniert. In diesem Band stellen Studierende der Universit{\"a}t Potsdam sowie H{\"o}rerinnen und H{\"o}rer der Peter A. Silbermann-Schule (Berlin) nach einem kurzen {\"U}berblick zum Widerstand gegen den Nationalsozialismus in Deutschland das Netzwerk der Roten Kapelle sowie die Biographien von Mildred Harnack und ihren Sch{\"u}lern Karl Behrens und Bodo Schl{\"o}singer vom Berliner Abendgymnasium eindr{\"u}cklich vor.}, language = {de} } @book{AmbauenArnoldBeckeretal.2017, author = {Ambauen, Ladina and Arnold, Maren and Becker, Christian and Chahrour, Mohamed Chaker and Destanovic, Edis and Fretter, Alexandra and Geißler, Marc and Gr{\"u}nberg, Uwe and Habl, Moritz and Hoffmann, Sandra and Juchler, Ingo and Jurkatis, Lena Christine and Keitel, Bernhard and Losensky, Nikolai and Mrowietz, Christian and Nadol, Dominic and Naumann, Asja and Ockenga, Imke and Pohlandt, Anne and P{\"u}rschel, Tobias and Recktenwald, Michelle and Stephan, Roswitha and Tuchel, Johannes and Weinkamp, Christina and Weiß, Christian and Wiecking, Ole and Wockenfuß, Patricia and Zalitatsch, Nora Lina}, title = {Mildred Harnack und die Rote Kapelle in Berlin}, editor = {Juchler, Ingo}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-407-4}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-398166}, publisher = {Universit{\"a}t Potsdam}, pages = {170}, year = {2017}, abstract = {Mildred Harnack, geb. Fish, stammte urspr{\"u}nglich aus Milwaukee, Wisconsin. Zusammen mit ihrem Ehemann Arvid Harnack zog sie nach Deutschland und lebte seit 1930 in Berlin. Hier lehrte die Literaturwissenschaftlerin an der Friedrich-Wilhelms-Universit{\"a}t (heute Humboldt-Universit{\"a}t) und am Berliner Abendgymnasium (heute Peter A. Silbermann-Schule). Bereits kurz nach der Macht{\"u}bernahme von Adolf Hitler hatte sich um das Ehepaar Harnack ein Kreis von Freunden gebildet, der gegen die Herrschaft der Nationalsozialisten opponierte. Dazu z{\"a}hlten auch Karl Behrens und Bodo Schl{\"o}singer, die beide Sch{\"u}ler Mildred Harnacks am Berliner Abendgymnasium waren. Mildred Harnack konnte mit Hilfe ihrer Kontakte zur amerikanischen Botschaft ihren Sch{\"u}lern im nationalsozialistischen Deutschland ansonsten nicht zug{\"a}ngliche Informationen besorgen. Aufgrund von Funkkontakten des Freundeskreises zur Sowjetunion wurde die Gruppe von den Nationalsozialisten Rote Kapelle genannt - „rot" bezog sich auf deren linke Haltung und mit „Kapelle" wurden Funker assoziiert, die wie Pianisten in einer Kapelle spielen. Der Berliner Oppositionszirkel umfasste bis zu seiner Zerschlagung durch die Nationalsozialisten etwa 150 Personen verschiedenster Berufsgruppen, unterschiedlicher parteipolitischer Einstellungen und Konfessionen. Die Gruppe verfertigte oppositionelle Flugbl{\"a}tter und lieferte Informationen an die amerikanische Botschaft sowie an die Sowjetunion. Mildred Harnack wurde - wie viele ihrer Mitstreiterinnen und Mitstreiter - nach ihrer Verhaftung vom Reichskriegsgericht zum Tode verurteilt und am 16. Februar 1943 in Pl{\"o}tzensee guillotiniert. In diesem Band stellen Studierende der Universit{\"a}t Potsdam sowie H{\"o}rerinnen und H{\"o}rer der Peter A. Silbermann-Schule (Berlin) nach einem kurzen {\"U}berblick zum Widerstand gegen den Nationalsozialismus in Deutschland das Netzwerk der Roten Kapelle sowie die Biographien von Mildred Harnack und ihren Sch{\"u}lern Karl Behrens und Bodo Schl{\"o}singer vom Berliner Abendgymnasium eindr{\"u}cklich vor.}, language = {de} } @article{DenglerWagnerDembiczetal.2018, author = {Dengler, J{\"u}rgen and Wagner, Viktoria and Dembicz, Iwona and Garcia-Mijangos, Itziar and Naqinezhad, Alireza and Boch, Steffen and Chiarucci, Alessandro and Conradi, Timo and Filibeck, Goffredo and Guarino, Riccardo and Janisova, Monika and Steinbauer, Manuel J. and Acic, Svetlana and Acosta, Alicia T. R. and Akasaka, Munemitsu and Allers, Marc-Andre and Apostolova, Iva and Axmanova, Irena and Bakan, Branko and Baranova, Alina and Bardy-Durchhalter, Manfred and Bartha, Sandor and Baumann, Esther and Becker, Thomas and Becker, Ute and Belonovskaya, Elena and Bengtsson, Karin and Benito Alonso, Jose Luis and Berastegi, Asun and Bergamini, Ariel and Bonini, Ilaria and Bruun, Hans Henrik and Budzhak, Vasyl and Bueno, Alvaro and Antonio Campos, Juan and Cancellieri, Laura and Carboni, Marta and Chocarro, Cristina and Conti, Luisa and Czarniecka-Wiera, Marta and De Frenne, Pieter and Deak, Balazs and Didukh, Yakiv P. and Diekmann, Martin and Dolnik, Christian and Dupre, Cecilia and Ecker, Klaus and Ermakov, Nikolai and Erschbamer, Brigitta and Escudero, Adrian and Etayo, Javier and Fajmonova, Zuzana and Felde, Vivian A. and Fernandez Calzado, Maria Rosa and Finckh, Manfred and Fotiadis, Georgios and Fracchiolla, Mariano and Ganeva, Anna and Garcia-Magro, Daniel and Gavilan, Rosario G. and Germany, Markus and Giladi, Itamar and Gillet, Francois and Giusso del Galdo, Gian Pietro and Gonzalez, Jose M. and Grytnes, John-Arvid and Hajek, Michal and Hajkova, Petra and Helm, Aveliina and Herrera, Mercedes and Hettenbergerova, Eva and Hobohm, Carsten and Huellbusch, Elisabeth M. and Ingerpuu, Nele and Jandt, Ute and Jeltsch, Florian and Jensen, Kai and Jentsch, Anke and Jeschke, Michael and Jimenez-Alfaro, Borja and Kacki, Zygmunt and Kakinuma, Kaoru and Kapfer, Jutta and Kavgaci, Ali and Kelemen, Andras and Kiehl, Kathrin and Koyama, Asuka and Koyanagi, Tomoyo F. and Kozub, Lukasz and Kuzemko, Anna and Kyrkjeeide, Magni Olsen and Landi, Sara and Langer, Nancy and Lastrucci, Lorenzo and Lazzaro, Lorenzo and Lelli, Chiara and Leps, Jan and Loebel, Swantje and Luzuriaga, Arantzazu L. and Maccherini, Simona and Magnes, Martin and Malicki, Marek and Marceno, Corrado and Mardari, Constantin and Mauchamp, Leslie and May, Felix and Michelsen, Ottar and Mesa, Joaquin Molero and Molnar, Zsolt and Moysiyenko, Ivan Y. and Nakaga, Yuko K. and Natcheva, Rayna and Noroozi, Jalil and Pakeman, Robin J. and Palpurina, Salza and Partel, Meelis and Paetsch, Ricarda and Pauli, Harald and Pedashenko, Hristo and Peet, Robert K. and Pielech, Remigiusz and Pipenbaher, Natasa and Pirini, Chrisoula and Pleskova, Zuzana and Polyakova, Mariya A. and Prentice, Honor C. and Reinecke, Jennifer and Reitalu, Triin and Pilar Rodriguez-Rojo, Maria and Rolecek, Jan and Ronkin, Vladimir and Rosati, Leonardo and Rosen, Ejvind and Ruprecht, Eszter and Rusina, Solvita and Sabovljevic, Marko and Maria Sanchez, Ana and Savchenko, Galina and Schuhmacher, Oliver and Skornik, Sonja and Sperandii, Marta Gaia and Staniaszek-Kik, Monika and Stevanovic-Dajic, Zora and Stock, Marin and Suchrow, Sigrid and Sutcliffe, Laura M. E. and Swacha, Grzegorz and Sykes, Martin and Szabo, Anna and Talebi, Amir and Tanase, Catalin and Terzi, Massimo and Tolgyesi, Csaba and Torca, Marta and Torok, Peter and Tothmeresz, Bela and Tsarevskaya, Nadezda and Tsiripidis, Ioannis and Tzonev, Rossen and Ushimaru, Atushi and Valko, Orsolya and van der Maarel, Eddy and Vanneste, Thomas and Vashenyak, Iuliia and Vassilev, Kiril and Viciani, Daniele and Villar, Luis and Virtanen, Risto and Kosic, Ivana Vitasovic and Wang, Yun and Weiser, Frank and Went, Julia and Wesche, Karsten and White, Hannah and Winkler, Manuela and Zaniewski, Piotr T. and Zhang, Hui and Ziv, Yaron and Znamenskiy, Sergey and Biurrun, Idoia}, title = {GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands}, series = {Phytocoenologia}, volume = {48}, journal = {Phytocoenologia}, number = {3}, publisher = {Cramer}, address = {Stuttgart}, issn = {0340-269X}, doi = {10.1127/phyto/2018/0267}, pages = {331 -- 347}, year = {2018}, abstract = {GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board.}, language = {en} } @article{GulbinsPalmadaReicheletal.2013, author = {Gulbins, Erich and Palmada, Monica and Reichel, Martin and Lueth, Anja and Boehmer, Christoph and Amato, Davide and Mueller, Christian P. and Tischbirek, Carsten H. and Groemer, Teja W. and Tabatabai, Ghazaleh and Becker, Katrin Anne and Tripal, Philipp and Staedtler, Sven and Ackermann, Teresa F. and van Brederode, Johannes and Alzheimer, Christian and Weller, Michael and Lang, Undine E. and Kleuser, Burkhard and Grassme, Heike and Kornhuber, Johannes}, title = {Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs}, series = {Nature medicine}, volume = {19}, journal = {Nature medicine}, number = {7}, publisher = {Nature Publ. Group}, address = {New York}, issn = {1078-8956}, doi = {10.1038/nm.3214}, pages = {934 -- +}, year = {2013}, abstract = {Major depression is a highly prevalent severe mood disorder that is treated with antidepressants. The molecular targets of antidepressants require definition. We investigated the role of the acid sphingomyelinase (Asm)-ceramide system as a target for antidepressants. Therapeutic concentrations of the antidepressants amitriptyline and fluoxetine reduced Asm activity and ceramide concentrations in the hippocampus, increased neuronal proliferation, maturation and survival and improved behavior in mouse models of stress-induced depression. Genetic Asm deficiency abrogated these effects. Mice overexpressing Asm, heterozygous for acid ceramidase, treated with blockers of ceramide metabolism or directly injected with C16 ceramide in the hippocampus had higher ceramide concentrations and lower rates of neuronal proliferation, maturation and survival compared with controls and showed depression-like behavior even in the absence of stress. The decrease of ceramide abundance achieved by antidepressant-mediated inhibition of Asm normalized these effects. Lowering ceramide abundance may thus be a central goal for the future development of antidepressants.}, language = {en} } @article{BaerBecker2014, author = {B{\"a}r, Christian and Becker, Christian}, title = {Differential characters and geometric chains}, series = {Lecture notes in mathematics : a collection of informal reports and seminars}, volume = {2112}, journal = {Lecture notes in mathematics : a collection of informal reports and seminars}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-319-07034-6; 978-3-319-07033-9}, issn = {0075-8434}, doi = {10.1007/978-3-319-07034-6_1}, pages = {1 -- 90}, year = {2014}, abstract = {We study Cheeger-Simons differential characters and provide geometric descriptions of the ring structure and of the fiber integration map. The uniqueness of differential cohomology (up to unique natural transformation) is proved by deriving an explicit formula for any natural transformation between a differential cohomology theory and the model given by differential characters. Fiber integration for fibers with boundary is treated in the context of relative differential characters. As applications we treat higher-dimensional holonomy, parallel transport, and transgression.}, language = {en} } @article{DiekmannAndresBeckeretal.2019, author = {Diekmann, Martin and Andres, Christian and Becker, Thomas and Bennie, Jonathan and Blueml, Volker and Bullock, James M. and Culmsee, Heike and Fanigliulo, Miriam and Hahn, Annett and Heinken, Thilo and Leuschner, Christoph and Luka, Stefanie and Meissner, Justus and M{\"u}ller, Josef and Newton, Adrian and Peppler-Lisbach, Cord and Rosenthal, Gert and van den Berg, Leon J. L. and Vergeer, Philippine and Wesche, Karsten}, title = {Patterns of long-term vegetation change vary between different types of semi-natural grasslands in Western and Central Europe}, series = {Journal of vegetation science}, volume = {30}, journal = {Journal of vegetation science}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {1100-9233}, doi = {10.1111/jvs.12727}, pages = {187 -- 202}, year = {2019}, abstract = {Questions Has plant species richness in semi-natural grasslands changed over recent decades? Do the temporal trends of habitat specialists differ from those of habitat generalists? Has there been a homogenization of the grassland vegetation? Location Different regions in Germany and the UK. Methods We conducted a formal meta-analysis of re-survey vegetation studies of semi-natural grasslands. In total, 23 data sets were compiled, spanning up to 75 years between the surveys, including 13 data sets from wet grasslands, six from dry grasslands and four from other grassland types. Edaphic conditions were assessed using mean Ellenberg indicator values for soil moisture, nitrogen and pH. Changes in species richness and environmental variables were evaluated using response ratios. Results In most wet grasslands, total species richness declined over time, while habitat specialists almost completely vanished. The number of species losses increased with increasing time between the surveys and were associated with a strong decrease in soil moisture and higher soil nutrient contents. Wet grasslands in nature reserves showed no such changes or even opposite trends. In dry grasslands and other grassland types, total species richness did not consistently change, but the number or proportions of habitat specialists declined. There were also considerable changes in species composition, especially in wet grasslands that often have been converted into intensively managed, highly productive meadows or pastures. We did not find a general homogenization of the vegetation in any of the grassland types. Conclusions The results document the widespread deterioration of semi-natural grasslands, especially of those types that can easily be transformed to high production grasslands. The main causes for the loss of grassland specialists are changed management in combination with increased fertilization and nitrogen deposition. Dry grasslands are most resistant to change, but also show a long-term trend towards an increase in more mesotrophic species.}, language = {en} } @article{PosovszkyRoeslerBeckeretal.2019, author = {Posovszky, Carsten and Roesler, Vreni Helen and Becker, Sebastian and Iven, Enno and Hudert, Christian and Ebinger, Friedrich and Calvano, Claudia and Warschburger, Petra}, title = {Roles of Lactose and Fructose Malabsorption and Dietary Outcomes in Children Presenting with Chronic Abdominal Pain}, series = {Nutrients}, volume = {11}, journal = {Nutrients}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu11123063}, pages = {13}, year = {2019}, abstract = {Intolerance to lactose or fructose is frequently diagnosed in children with chronic abdominal pain (CAP). However, the causal relationship remains a matter of discussion. A cohort of 253 patients, aged 7-12 years, presenting with unexplained CAP received standardized diagnostics. Additional diagnostic tests were performed based on their medical history and physical and laboratory investigations. Fructose and lactose hydrogen breath tests (H2BT) as well as empiric diagnostic elimination diets were performed in 135 patients reporting abdominal pain related to the consumption of lactose or fructose to evaluate carbohydrate intolerance as a potential cause of CAP. Carbohydrate malabsorption by H2BT was found in 55 (41\%) out of 135 patients. An abnormal increase in H2BT was revealed in 30\% (35/118) of patients after fructose consumption and in 18\% (20/114) of patients after lactose administration. Forty-six percent (25/54) reported pain relief during a diagnostic elimination diet. In total, 17 patients had lactose malabsorption, 29 fructose malabsorption, and nine combined carbohydrate malabsorption. Carbohydrate intolerance as a cause of CAP was diagnosed at follow-up in only 18\% (10/55) of patients with malabsorption after the elimination of the respective carbohydrate. Thus, carbohydrate malabsorption appears to be an incidental finding in children with functional abdominal pain disorders, rather than its cause. Therefore, testing of carbohydrate intolerance should only be considered in children with a strong clinical suspicion and with the goal to prevent long-term unnecessary dietary restrictions in children suffering from CAP.}, language = {en} } @phdthesis{Becker2005, author = {Becker, Christian}, title = {On the Riemannian geometry of Seiberg-Witten moduli spaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5425}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {In this thesis, we give two constructions for Riemannian metrics on Seiberg-Witten moduli spaces. Both these constructions are naturally induced from the L2-metric on the configuration space. The construction of the so called quotient L2-metric is very similar to the one construction of an L2-metric on Yang-Mills moduli spaces as given by Groisser and Parker. To construct a Riemannian metric on the total space of the Seiberg-Witten bundle in a similar way, we define the reduced gauge group as a subgroup of the gauge group. We show, that the quotient of the premoduli space by the reduced gauge group is isomorphic as a U(1)-bundle to the quotient of the premoduli space by the based gauge group. The total space of this new representation of the Seiberg-Witten bundle carries a natural quotient L2-metric, and the bundle projection is a Riemannian submersion with respect to these metrics. We compute explicit formulae for the sectional curvature of the moduli space in terms of Green operators of the elliptic complex associated with a monopole. Further, we construct a Riemannian metric on the cobordism between moduli spaces for different perturbations. The second construction of a Riemannian metric on the moduli space uses a canonical global gauge fixing, which represents the total space of the Seiberg-Witten bundle as a finite dimensional submanifold of the configuration space. We consider the Seiberg-Witten moduli space on a simply connected K\äuhler surface. We show that the moduli space (when nonempty) is a complex projective space, if the perturbation does not admit reducible monpoles, and that the moduli space consists of a single point otherwise. The Seiberg-Witten bundle can then be identified with the Hopf fibration. On the complex projective plane with a special Spin-C structure, our Riemannian metrics on the moduli space are Fubini-Study metrics. Correspondingly, the metrics on the total space of the Seiberg-Witten bundle are Berger metrics. We show that the diameter of the moduli space shrinks to 0 when the perturbation approaches the wall of reducible perturbations. Finally we show, that the quotient L2-metric on the Seiberg-Witten moduli space on a K\ähler surface is a K\ähler metric.}, subject = {Eichtheorie}, language = {en} } @article{DorenkampBonaventuraSohnsetal.2012, author = {Dorenkamp, Marc and Bonaventura, Klaus and Sohns, Christian and Becker, Christoph R. and Leber, Alexander W.}, title = {Direct costs and cost-effectiveness of dual-source computed tomography and invasive coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease}, series = {Heart}, volume = {98}, journal = {Heart}, number = {6}, publisher = {BMJ Publ. Group}, address = {London}, issn = {1355-6037}, doi = {10.1136/heartjnl-2011-300149}, pages = {460 -- 467}, year = {2012}, abstract = {Aims The study aims to determine the direct costs and comparative cost-effectiveness of latest-generation dual-source computed tomography (DSCT) and invasive coronary angiography for diagnosing coronary artery disease (CAD) in patients suspected of having this disease. Methods The study was based on a previously elaborated cohort with an intermediate pretest likelihood for CAD and on complementary clinical data. Cost calculations were based on a detailed analysis of direct costs, and generally accepted accounting principles were applied. Based on Bayes' theorem, a mathematical model was used to compare the cost-effectiveness of both diagnostic approaches. Total costs included direct costs, induced costs and costs of complications. Effectiveness was defined as the ability of a diagnostic test to accurately identify a patient with CAD. Results Direct costs amounted to (sic)98.60 for DSCT and to (sic)317.75 for invasive coronary angiography. Analysis of model calculations indicated that cost-effectiveness grew hyperbolically with increasing prevalence of CAD. Given the prevalence of CAD in the study cohort (24\%), DSCT was found to be more cost-effective than invasive coronary angiography ((sic)970 vs (sic)1354 for one patient correctly diagnosed as having CAD). At a disease prevalence of 49\%, DSCT and invasive angiography were equally effective with costs of (sic)633. Above a threshold value of disease prevalence of 55\%, proceeding directly to invasive coronary angiography was more cost-effective than DSCT. Conclusions With proper patient selection and consideration of disease prevalence, DSCT coronary angiography is cost-effective for diagnosing CAD in patients with an intermediate pretest likelihood for it. However, the range of eligible patients may be smaller than previously reported.}, language = {en} } @misc{BeckerSchenkelSzabo2017, author = {Becker, Christian and Schenkel, Alexander and Szabo, Richard J.}, title = {Differential cohomology and locally covariant quantum field theory}, series = {Reviews in Mathematical Physics}, volume = {29}, journal = {Reviews in Mathematical Physics}, number = {1}, publisher = {World Scientific}, address = {Singapore}, issn = {0129-055X}, doi = {10.1142/S0129055X17500039}, pages = {42}, year = {2017}, abstract = {We study differential cohomology on categories of globally hyperbolic Lorentzian manifolds. The Lorentzian metric allows us to define a natural transformation whose kernel generalizes Maxwell's equations and fits into a restriction of the fundamental exact sequences of differential cohomology. We consider smooth Pontryagin duals of differential cohomology groups, which are subgroups of the character groups. We prove that these groups fit into smooth duals of the fundamental exact sequences of differential cohomology and equip them with a natural presymplectic structure derived from a generalized Maxwell Lagrangian. The resulting presymplectic Abelian groups are quantized using the CCR-functor, which yields a covariant functor from our categories of globally hyperbolic Lorentzian manifolds to the category of C∗-algebras. We prove that this functor satisfies the causality and time-slice axioms of locally covariant quantum field theory, but that it violates the locality axiom. We show that this violation is precisely due to the fact that our functor has topological subfunctors describing the Pontryagin duals of certain singular cohomology groups. As a byproduct, we develop a Fr{\´e}chet-Lie group structure on differential cohomology groups.}, language = {en} }