@article{GoergPlochKruseetal.2017, author = {Goerg, Marlena and Ploch, Sebastian and Kruse, Julia and Kummer, Volker and Runge, Fabian and Choi, Young-Joon and Thines, Marco}, title = {Revision of Plasmopara (Oomycota, Peronosporales) parasitic to Impatiens}, series = {Mycological progress : international journal of the German Mycological Society}, volume = {16}, journal = {Mycological progress : international journal of the German Mycological Society}, publisher = {Springer}, address = {Heidelberg}, issn = {1617-416X}, doi = {10.1007/s11557-017-1316-y}, pages = {791 -- 799}, year = {2017}, abstract = {The oomycete Plasmopara obducens was first described on wild Impatiens noli-tangere in Germany in 1877. About 125 years later the first occurrence of P. obducens on cultivated I. walleriana in the United Kingdom was reported, and a worldwide epidemic followed. Although this pathogen is a major threat for ornamental busy lizzy, the identity of the pathogen remained unconfirmed and the high host specificity observed for the genus Plasmopara cast doubts regarding its determination as P. obducens. In this study, using multigene phylogenies and morphological investigation, it is revealed that P. obducens on I. noli-tangere is not the conspecific with the pathogen affecting I. walleriana and another ornamental balsam, I. balsamina. As a consequence, the new names P. destructor and P. velutina are introduced for the pathogens of I. walleriana and I. balsamina, respectively.}, language = {en} } @article{ChoiKlostermanKummeretal.2015, author = {Choi, Young-Joon and Klosterman, Steven J. and Kummer, Volker and Voglmayr, Hermann and Shin, Hyeon-Dong and Thines, Marco}, title = {Multi-locus tree and species tree approaches toward resolving a complex clade of downy mildews (Straminipila, Oomycota), including pathogens of beet and spinach}, series = {Molecular phylogenetics and evolution}, volume = {86}, journal = {Molecular phylogenetics and evolution}, publisher = {Elsevier}, address = {San Diego}, issn = {1055-7903}, doi = {10.1016/j.ympev.2015.03.003}, pages = {24 -- 34}, year = {2015}, abstract = {Accurate species determination of plant pathogens is a prerequisite for their control and quarantine, and further for assessing their potential threat to crops. The family Peronosporaceae (Straminipila; Oomycota) consists of obligate biotrophic pathogens that cause downy mildew disease on angiosperms, including a large number of cultivated plants. In the largest downy mildew genus Peronospora, a phylogenetically complex clade includes the economically important downy mildew pathogens of spinach and beet, as well as the type species of the genus Peronospora. To resolve this complex clade at the species level and to infer evolutionary relationships among them, we used multi-locus phylogenetic analysis and species tree estimation. Both approaches discriminated all nine currently accepted species and revealed four previously unrecognized lineages, which are specific to a host genus or species. This is in line with a narrow species concept, i.e. that a downy mildew species is associated with only a particular host plant genus or species. Instead of applying the dubious name Peronospora farinosa, which has been proposed for formal rejection, our results provide strong evidence that Peronospora schachtii is an independent species from lineages on Atriplex and apparently occurs exclusively on Beta vulgaris. The members of the clade investigated, the Peronospora rumicis clade, associate with three different host plant families, Amaranthaceae, Caryophyllaceae, and Polygonaceae, suggesting that they may have speciated following at least two recent inter-family host shifts, rather than contemporary cospeciation with the host plants. (C) 2015 Elsevier Inc. All rights reserved.}, language = {en} }