@misc{YangDarkoHuangetal.2017, author = {Yang, Xiaoping and Darko, Kwame Oteng and Huang, Yanjun and He, Caimei and Yang, Huansheng and He, Shanping and Li, Jianzhong and Li, Jian and Hocher, Berthold and Yin, Yulong}, title = {Resistant starch regulates gut microbiota}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {42}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, number = {1}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000477386}, pages = {306 -- 318}, year = {2017}, abstract = {Starch is one of the most popular nutritional sources for both human and animals. Due to the variation of its nutritional traits and biochemical specificities, starch has been classified into rapidly digestible, slowly digestible and resistant starch. Resistant starch has its own unique chemical structure, and various forms of resistant starch are commercially available. It has been found being a multiple-functional regulator for treating metabolic dysfunction. Different functions of resistant starch such as modulation of the gut microbiota, gut peptides, circulating growth factors, circulating inflammatory mediators have been characterized by animal studies and clinical trials. In this mini-review, recent remarkable progress in resistant starch on gut microbiota, particularly the effect of structure, biochemistry and cell signaling on nutrition has been summarized, with highlights on its regulatory effect on gut microbiota.}, language = {en} } @article{TaoSuXuetal.2018, author = {Tao, Ting and Su, Qiongli and Xu, Simeng and Deng, Jun and Zhou, Sichun and Zhuang, Yu and Huang, Yanjun and He, Caimei and He, Shanping and Peng, Mei and Hocher, Berthold and Yang, Xiaoping}, title = {Down-regulation of PKM2 decreases FASN expression in bladder cancer cells through AKT/mTOR/SREBP-1c axis}, series = {Journal of cellular physiology}, volume = {234}, journal = {Journal of cellular physiology}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0021-9541}, doi = {10.1002/jcp.27129}, pages = {3088 -- 3104}, year = {2018}, abstract = {Fatty acid synthase (FASN) catalyzing the terminal steps in the de novo biogenesis of fatty acids is correlated with low survival and high disease recurrence in patients with bladder cancer. Pyruvate kinase M2 (PKM2) regulates the final step of glycolysis levels and provides a growth advantage to tumors. However, it is unclear whether the change of PKM2 has an effect on FASN and what is the mechanisms underlying. Here we describe a novel function of PKM2 in control of lipid metabolism by mediating transcriptional activation of FASN, showing the reduced expression of sterol regulatory element binding protein 1c (SREBP-1c). We first discovered that PKM2 physically interacts with the SREBP-1c using biochemical approaches, and downregulation of PKM2 reduced the expression of SREBP-1c by inactivating the AKT/mTOR signaling pathway, which in turn directly suppressed the transcription of major lipogenic genes FASN to reduce tumor growths. Furthermore, either PKM2 inhibitor-Shikonin or FASN inhibitor-TVB-3166 alone induced a strong antiproliferative and anticolony forming effect in bladder cancer cell line. The combination of both inhibitors exhibits a super synergistic effect on blocking the bladder cancer cells growth. It provides a new target and scientific basis for the treatment of bladder cancer.}, language = {en} }