@misc{DoritiBrosnanWeidneretal.2016, author = {Doriti, Afroditi and Brosnan, Sarah M. and Weidner, Steffen M. and Schlaad, Helmut}, title = {Synthesis of polysarcosine from air and moisture stable N-phenoxycarbonyl-N-methylglycine assisted by tertiary amine base}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95852}, pages = {3067 -- 3070}, year = {2016}, abstract = {Polysarcosine (Mn = 3650-20 000 g mol-1, Đ ∼ 1.1) was synthesized from the air and moisture stable N-phenoxycarbonyl-N-methylglycine. Polymerization was achieved by in situ transformation of the urethane precursor into the corresponding N-methylglycine-N-carboxyanhydride, when in the presence of a non-nucleophilic tertiary amine base and a primary amine initiator.}, language = {en} } @article{DoritiBrosnanWeidneretal.2016, author = {Doriti, Afroditi and Brosnan, Sarah M. and Weidner, Steffen M. and Schlaad, Helmut}, title = {Synthesis of polysarcosine from air and moisture stable N-phenoxycarbonyl-N-methylglycine assisted by tertiary amine base}, series = {Polymer Chemistry}, volume = {7}, journal = {Polymer Chemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c6py00221h}, pages = {3067 -- 3070}, year = {2016}, abstract = {Polysarcosine (M-n = 3650-20 000 g mol(-1), D similar to 1.1) was synthesized from the air and moisture stable N-phenoxycarbonyl-N-methylglycine. Polymerization was achieved by in situ transformation of the urethane precursor into the corresponding N-methylglycine-N-carboxyanhydride, when in the presence of a non-nucleophilic tertiary amine base and a primary amine initiator.}, language = {en} } @article{DoritiBrosnanWeidneretal.2016, author = {Doriti, Afroditi and Brosnan, Sarah M. and Weidner, Steffen M. and Schlaad, Helmut}, title = {Synthesis of polysarcosine from air and moisture stable N-phenoxycarbonyl-N-methylglycine assisted by tertiary amine base}, series = {Polymer Chemistry}, volume = {7}, journal = {Polymer Chemistry}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/C6PY00221H}, pages = {3067 -- 3070}, year = {2016}, abstract = {Polysarcosine (Mn = 3650-20 000 g mol-1, Đ ∼ 1.1) was synthesized from the air and moisture stable N-phenoxycarbonyl-N-methylglycine. Polymerization was achieved by in situ transformation of the urethane precursor into the corresponding N-methylglycine-N-carboxyanhydride, when in the presence of a non-nucleophilic tertiary amine base and a primary amine initiator.}, language = {en} } @misc{VacogneBrosnanMasicetal.2015, author = {Vacogne, Charlotte D. and Brosnan, Sarah M. and Masic, Admir and Schlaad, Helmut}, title = {Fibrillar gels via the self-assembly of poly(L-glutamate)-based statistical copolymers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102289}, pages = {5040 -- 5052}, year = {2015}, abstract = {Polypeptides having secondary structures often undergo self-assembly which can extend over multiple length scales. Poly(γ-benzyl-L-glutamate) (PBLG), for example, folds into α-helices and forms physical organogels, whereas poly(L-glutamic acid) (PLGA at acidic pH) or poly(L-glutamate) (PLG at neutral/basic pH) do not form hydrogels. We explored the gelation of modified PBLG and investigated the deprotection of the carboxylic acid moieties in such gels to yield unique hydrogels. This was accomplished through photo-crosslinking gelation of poly(γ-benzyl-L-glutamate-co-allylglycine) statistical copolymers in toluene, tetrahydrofuran, and 1,4-dioxane. Unlike most polymer-based chemical gels, our gels were prepared from dilute solutions (<20 g L-1, i.e., <2\% w/v) of low molar mass polymers. Despite such low concentrations and molar masses, our dioxane gels showed high mechanical stability and little shrinkage; remarkably, they also exhibited a porous fibrillar network. Deprotection of the carboxylic acid moieties in dioxane gels yielded pH responsive and highly absorbent PLGA/PLG-based hydrogels (swelling ratio of up to 87), while preserving the network structure, which is an unprecedented feature in the context of crosslinked PLGA gels. These outstanding properties are highly attractive for biomedical materials.}, language = {en} } @article{SeckerBrosnanLimbergetal.2015, author = {Secker, Christian and Brosnan, Sarah M. and Limberg, Felix Rolf Paul and Braun, Ulrike and Trunk, Matthias and Strauch, Peter and Schlaad, Helmut}, title = {Thermally Induced Crosslinking of Poly(N-Propargyl Glycine)}, series = {Macromolecular chemistry and physics}, volume = {216}, journal = {Macromolecular chemistry and physics}, number = {21}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201500223}, pages = {2080 -- 2085}, year = {2015}, abstract = {As polypeptoids become increasingly popular, they present a more soluble and processable alternative to natural and synthetic polypeptides; the breadth of their potential functionality slowly comes into focus. This report analyzes the ability of an alkyne-functionalized polypeptoid, poly(N-propargyl glycine), to crosslink upon heating. The crosslinking process is analyzed by thermal analysis (differential scanning calorimetry and thermogravimetric analysis), Fourier-transform infrared, electron paramagnetic resonance, and solid-state NMR spectroscopy. While a precise mechanism cannot be confidently assigned, it is clear that the reaction proceeds by a radical mechanism that exclusively involves the alkyne functionality, which, upon crosslinking, yields alkene and aromatic products.}, language = {en} } @article{SeckerBrosnanLuxenhoferetal.2015, author = {Secker, Christian and Brosnan, Sarah M. and Luxenhofer, Robert and Schlaad, Helmut}, title = {Poly(alpha-Peptoid)s Revisited: Synthesis, Properties, and Use as Biomaterial}, series = {Macromolecular bioscience}, volume = {15}, journal = {Macromolecular bioscience}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-5187}, doi = {10.1002/mabi.201500023}, pages = {881 -- 891}, year = {2015}, abstract = {Polypeptoids have been of great interest in the polymer science community since the early half of the last century; however, they had been basically forgotten materials until the last decades in which they have enjoyed an exciting revival. In this mini-review, we focus on the recent developments in polypeptoid chemistry, with particular focus on polymers synthesized by the ring-opening polymerization (ROP) of amino acid N-carboxyanhydrides (NCAs). Specifically, we will review traditional monomer synthesis (such as Leuchs, Katchalski, and Kricheldorf) and recent advances in polymerization methods to yield both linear, cyclic, and functional polymers, solution and bulk thermal properties, and preliminary results on the use of polypeptoids as biomaterials (i.e immunogenicity, biodistribution, degradability, and drug delivery).}, language = {en} } @article{BrosnanSchlaadAntonietti2015, author = {Brosnan, Sarah M. and Schlaad, Helmut and Antonietti, Markus}, title = {Aqueous Self-Assembly of Purely Hydrophilic Block Copolymers into Giant Vesicles}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {54}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {33}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201502100}, pages = {9715 -- 9718}, year = {2015}, abstract = {Self-assembly of macromolecules is fundamental to life itself, and historically, these systems have been primitively mimicked by the development of amphiphilic systems, driven by the hydrophobic effect. Herein, we demonstrate that self-assembly of purely hydrophilic systems can be readily achieved with similar ease and success. We have synthesized double hydrophilic block copolymers from polysaccharides and poly(ethylene oxide) or poly(sarcosine) to yield high molar mass diblock copolymers through oxime chemistry. These hydrophilic materials can easily assemble into nanosized (<500nm) and microsized (>5m) polymeric vesicles depending on concentration and diblock composition. Because of the solely hydrophilic nature of these materials, we expect them to be extraordinarily water permeable systems that would be well suited for use as cellular mimics.}, language = {en} } @article{VacogneBrosnanMasicetal.2015, author = {Vacogne, Charlotte D. and Brosnan, Sarah M. and Masic, Admir and Schlaad, Helmut}, title = {Fibrillar gels via the self-assembly of poly(L-glutamate)-based statistical copolymers}, series = {Polymer Chemistry}, volume = {6}, journal = {Polymer Chemistry}, number = {28}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c5py00491h}, pages = {5040 -- 5052}, year = {2015}, abstract = {Polypeptides having secondary structures often undergo self-assembly which can extend over multiple length scales. Poly(gamma-benzyl-L-glutamate) (PBLG), for example, folds into a-helices and forms physical organogels, whereas poly(L-glutamic acid) (PLGA at acidic pH) or poly(L-glutamate) (PLG at neutral/basic pH) do not form hydrogels. We explored the gelation of modified PBLG and investigated the deprotection of the carboxylic acid moieties in such gels to yield unique hydrogels. This was accomplished through photo-crosslinking gelation of poly(gamma-benzyl-L-glutamate-co-allylglycine) statistical copolymers in toluene, tetrahydrofuran, and 1,4-dioxane. Unlike most polymer-based chemical gels, our gels were prepared from dilute solutions (<20 g L-1, i.e., <2\% w/v) of low molar mass polymers. Despite such low concentrations and molar masses, our dioxane gels showed high mechanical stability and little shrinkage; remarkably, they also exhibited a porous fibrillar network. Deprotection of the carboxylic acid moieties in dioxane gels yielded pH responsive and highly absorbent PLGA/PLG-based hydrogels (swelling ratio of up to 87), while preserving the network structure, which is an unprecedented feature in the context of crosslinked PLGA gels. These outstanding properties are highly attractive for biomedical materials.}, language = {en} } @article{BrosnanSchlaad2014, author = {Brosnan, Sarah M. and Schlaad, Helmut}, title = {Modification of polypeptide materials by Thiol-X chemistry}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {55}, journal = {Polymer : the international journal for the science and technology of polymers}, number = {22}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-3861}, doi = {10.1016/j.polymer.2014.08.067}, pages = {5511 -- 5516}, year = {2014}, abstract = {Thiol-X chemistry has proven to be a valuable toolbox for modification of peptides, proteins, monomers, and polymers. Recently, this has become especially true for the modification of polypeptides (monomers or polymers), which has resulted in a plethora of novel polymers and materials. With this in mind, this highlight focuses on the recent literature concerning the modification of polypeptides by the use of thiol-X chemistry, in particular to synthetic polypeptides either at the monomer or polymer stage modified by thiol-ene, -Michael addition, and -yne chemistries. (C) 2014 Published by Elsevier Ltd.}, language = {en} }