@phdthesis{Kralemann2010, author = {Kralemann, Bj{\"o}rn Christian}, title = {Die Rekonstruktion invarianter Phasenmodelle aus Daten}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45057}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Ziel dieser Arbeit ist die {\"U}berwindung einer Differenz, die zwischen der Theorie der Phase bzw. der Phasendynamik und ihrer Anwendung in der Zeitreihenanalyse besteht: W{\"a}hrend die theoretische Phase eindeutig bestimmt und invariant unter Koordinatentransformationen bzw. gegen{\"u}ber der jeweils gew{\"a}hlten Observable ist, f{\"u}hren die Standardmethoden zur Absch{\"a}tzung der Phase aus gegebenen Zeitreihen zu Resultaten, die einerseits von den gew{\"a}hlten Observablen abh{\"a}ngen und so andererseits das jeweilige System keineswegs in eindeutiger und invarianter Weise beschreiben. Um diese Differenz deutlich zu machen, wird die terminologische Unterscheidung von Phase und Protophase eingef{\"u}hrt: Der Terminus Phase wird nur f{\"u}r Variablen verwendet, die dem theoretischen Konzept der Phase entsprechen und daher das jeweilige System in invarianter Weise charakterisieren, w{\"a}hrend die observablen-abh{\"a}ngigen Absch{\"a}tzungen der Phase aus Zeitreihen als Protophasen bezeichnet werden. Der zentrale Gegenstand dieser Arbeit ist die Entwicklung einer deterministischen Transformation, die von jeder Protophase eines selbsterhaltenden Oszillators zur eindeutig bestimmten Phase f{\"u}hrt. Dies erm{\"o}glicht dann die invariante Beschreibung gekoppelter Oszillatoren und ihrer Wechselwirkung. Die Anwendung der Transformation bzw. ihr Effekt wird sowohl an numerischen Beispielen demonstriert - insbesondere wird die Phasentransformation in einem Beispiel auf den Fall von drei gekoppelten Oszillatoren erweitert - als auch an multivariaten Messungen des EKGs, des Pulses und der Atmung, aus denen Phasenmodelle der kardiorespiratorischen Wechselwirkung rekonstruiert werden. Abschließend wird die Phasentransformation f{\"u}r autonome Oszillatoren auf den Fall einer nicht vernachl{\"a}ssigbaren Amplitudenabh{\"a}ngigkeit der Protophase erweitert, was beispielsweise die numerischen Bestimmung der Isochronen des chaotischen R{\"o}ssler Systems erm{\"o}glicht.}, language = {de} } @article{KralemannPikovskijRosenblum2013, author = {Kralemann, Bj{\"o}rn and Pikovskij, Arkadij and Rosenblum, Michael}, title = {Detecting triplet locking by triplet synchronization indices}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {87}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {5}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.87.052904}, pages = {6}, year = {2013}, abstract = {We discuss the effect of triplet synchrony in oscillatory networks. In this state the phases and the frequencies of three coupled oscillators fulfill the conditions of a triplet locking, whereas every pair of systems remains asynchronous. We suggest an easy to compute measure, a triplet synchronization index, which can be used to detect such states from experimental data.}, language = {en} } @article{KralemannPikovskijRosenblum2011, author = {Kralemann, Bj{\"o}rn and Pikovskij, Arkadij and Rosenblum, Michael}, title = {Reconstructing phase dynamics of oscillator networks}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {21}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {2}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.3597647}, pages = {10}, year = {2011}, abstract = {We generalize our recent approach to the reconstruction of phase dynamics of coupled oscillators from data [B. Kralemann et al., Phys. Rev. E 77, 066205 (2008)] to cover the case of small networks of coupled periodic units. Starting from a multivariate time series, we first reconstruct genuine phases and then obtain the coupling functions in terms of these phases. Partial norms of these coupling functions quantify directed coupling between oscillators. We illustrate the method by different network motifs for three coupled oscillators and for random networks of five and nine units. We also discuss nonlinear effects in coupling.}, language = {en} } @article{SchwabedalPikovskijKralemannetal.2012, author = {Schwabedal, Justus T. C. and Pikovskij, Arkadij and Kralemann, Bj{\"o}rn and Rosenblum, Michael}, title = {Optimal phase description of chaotic oscillators}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {85}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.85.026216}, pages = {9}, year = {2012}, abstract = {We introduce an optimal phase description of chaotic oscillations by generalizing the concept of isochrones. On chaotic attractors possessing a general phase description, we define the optimal isophases as Poincare surfaces showing return times as constant as possible. The dynamics of the resultant optimal phase is maximally decoupled from the amplitude dynamics and provides a proper description of the phase response of chaotic oscillations. The method is illustrated with the Rossler and Lorenz systems.}, language = {en} }