@article{OpitzWuennemannAichneretal.2012, author = {Opitz, Stephan and W{\"u}nnemann, Bernd and Aichner, Bernhard and Dietze, Elisabeth and Hartmann, Kai and Herzschuh, Ulrike and IJmker, Janneke and Lehmkuhl, Frank and Li, Shijie and Mischke, Steffen and Plotzki, Anna and Stauch, Georg and Diekmann, Bernhard}, title = {Late Glacial and Holocene development of Lake Donggi Cona, north-eastern Tibetan Plateau, inferred from sedimentological analysis}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {337}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, number = {23}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2012.04.013}, pages = {159 -- 176}, year = {2012}, abstract = {Sediments of Lake Donggi Cona on the northeastern Tibetan Plateau were studied to infer changes in the lacustrine depositional environment, related to climatic and non-climatic changes during the last 19 kyr. The lake today fills a 30x8 km big and 95 m deep tectonic basin, associated with the Kunlun Fault. The study was conducted on a sediment-core transect through the lake basin, in order to gain a complete picture of spatio-temporal environmental change. The recovered sediments are partly finely laminated and are composed of calcareous muds with variable amounts of carbonate micrite, organic matter, detrital silt and clay. On the basis of sedimentological, geochemical, and mineralogical data up to five lithological units (LU) can be distinguished that document distinct stages in the development of the lake system. The onset of the lowermost LU with lacustrine muds above basal sands indicates that lake level was at least 39 m below the present level and started to rise after 19 ka, possibly in response to regional deglaciation. At this time, the lacustrine environment was characterized by detrital sediment influx and the deposition of siliciclastic sediment. In two sediment cores, upward grain-size coarsening documents a lake-level fall after 13 cal ka BP, possibly associated with the late-glacial Younger Dryas stadial. From 11.5 to 4.3 cal ka BP, grain-size fining in sediment cores from the profundal coring sites and the onset of lacustrine deposition at a litoral core site (2 m water depth) in a recent marginal bay of Donggi Cona document lake-level rise during the early to mid-Holocene to at least modern level. In addition, high biological productivity and pronounced precipitation of carbonate micrites are consistent with warm and moist climate conditions related to an enhanced influence of summer monsoon. At 4.3 cal ka BP the lake system shifted from an aragonite- to a calcite-dominated system, indicating a change towards a fully open hydrological lake system. The younger clay-rich sediments are moreover non-laminated and lack any diagenetic sulphides, pointing to fully ventilated conditions, and the prevailing absence of lake stratification. This turning point in lake history could imply either a threshold response to insolation-forced climate cooling or a response to a non-climatic trigger, such as an erosional event or a tectonic pulse that induced a strong earthquake, which is difficult to decide from our data base.}, language = {en} } @article{RamischTjallingiiHartmannetal.2018, author = {Ramisch, Arne and Tjallingii, Rik and Hartmann, Kai and Diekmann, Bernhard and Brauer, Achim}, title = {Echo of the Younger Dryas in Holocene Lake Sediments on the Tibetan Plateau}, series = {Geophysical research letters}, volume = {45}, journal = {Geophysical research letters}, number = {20}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2018GL080225}, pages = {154 -- 163}, year = {2018}, abstract = {Reading the sediment record in terms of past climates is challenging since linking climate change to the associated responses of sedimentary systems is not always straightforward. Here we analyze the erosional response of landscapes on the Tibetan Plateau to interglacial climate forcing. Using the theory of dynamical systems on Holocene time series of geochemical proxies, we derive a sedimentary response model that accurately simulates observed proxy variation in three lake records. The model suggests that millennial variations in sediment composition reflect a self-organization of landscapes in response to abrupt climate change between 11.6 and 11.9 ka BP. The self-organization is characterized by oscillations in sediment supply emerging from a feedback between physical and chemical erosion processes, with estimated response times between 3,000 to 18,000 years depending on catchment topography. The implications of our findings emphasize the need for landscape response models to decipher the paleoclimatic code in continental sediment records. Plain Language Summary Lake sediments are an important source of information on past climates. Reading the information is not always straightforward. Complex interactions in landscapes can affect the transmission of climatic signals to the sediment record. However, the exact nature of such complex interactions remains unknown. This study compares sediment deposits of three lakes on the Tibetan Plateau. The deposits are continuous records of landscape responses to climate change during the last 12,000 years. We identified a mathematical model that accurately simulates changes in sediment composition at all sites. The model simulations suggest that an abrupt warming at the end of the last glacial period destabilized the landscapes. This caused fluctuations in the transport of sediments, which persisted for several thousand years. Our findings present evidence for a long-lasting impact of abrupt climate change on fundamental Earth surface processes.}, language = {en} } @article{RamischTjallingiiHartmannetal.2018, author = {Ramisch, Arne and Tjallingii, Rik and Hartmann, Kai and Diekmann, Bernhard and Brauer, Achim}, title = {Echo of the Younger Dryas in Holocene Lake Sediments on the Tibetan Plateau}, series = {Geophysical research letters}, volume = {45}, journal = {Geophysical research letters}, number = {20}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2018GL080225}, pages = {11154 -- 11163}, year = {2018}, abstract = {Reading the sediment record in terms of past climates is challenging since linking climate change to the associated responses of sedimentary systems is not always straightforward. Here we analyze the erosional response of landscapes on the Tibetan Plateau to interglacial climate forcing. Using the theory of dynamical systems on Holocene time series of geochemical proxies, we derive a sedimentary response model that accurately simulates observed proxy variation in three lake records. The model suggests that millennial variations in sediment composition reflect a self-organization of landscapes in response to abrupt climate change between 11.6 and 11.9 ka BP. The self-organization is characterized by oscillations in sediment supply emerging from a feedback between physical and chemical erosion processes, with estimated response times between 3,000 to 18,000 years depending on catchment topography. The implications of our findings emphasize the need for landscape response models to decipher the paleoclimatic code in continental sediment records. Plain Language Summary Lake sediments are an important source of information on past climates. Reading the information is not always straightforward. Complex interactions in landscapes can affect the transmission of climatic signals to the sediment record. However, the exact nature of such complex interactions remains unknown. This study compares sediment deposits of three lakes on the Tibetan Plateau. The deposits are continuous records of landscape responses to climate change during the last 12,000 years. We identified a mathematical model that accurately simulates changes in sediment composition at all sites. The model simulations suggest that an abrupt warming at the end of the last glacial period destabilized the landscapes. This caused fluctuations in the transport of sediments, which persisted for several thousand years. Our findings present evidence for a long-lasting impact of abrupt climate change on fundamental Earth surface processes.}, language = {en} } @article{StruckPaulHilletal.2011, author = {Struck, Torsten H. and Paul, Christiane and Hill, Natascha and Hartmann, Stefanie and Hoesel, Christoph and Kube, Michael and Lieb, Bernhard and Meyer, Achim and Tiedemann, Ralph and Purschke, Guenter and Bleidorn, Christoph}, title = {Phylogenomic analyses unravel annelid evolution}, series = {Nature : the international weekly journal of science}, volume = {471}, journal = {Nature : the international weekly journal of science}, number = {7336}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature09864}, pages = {95 -- U113}, year = {2011}, abstract = {Annelida, the ringed worms, is a highly diverse animal phylum that includes more than 15,000 described species and constitutes the dominant benthic macrofauna from the intertidal zone down to the deep sea. A robust annelid phylogeny would shape our understanding of animal body-plan evolution and shed light on the bilaterian ground pattern. Traditionally, Annelida has been split into two major groups: Clitellata (earthworms and leeches) and polychaetes (bristle worms), but recent evidence suggests that other taxa that were once considered to be separate phyla (Sipuncula, Echiura and Siboglinidae (also known as Pogonophora)) should be included in Annelida(1-4). However, the deep-level evolutionary relationships of Annelida are still poorly understood, and a robust reconstruction of annelid evolutionary history is needed. Here we show that phylogenomic analyses of 34 annelid taxa, using 47,953 amino acid positions, recovered a well-supported phylogeny with strong support for major splits. Our results recover chaetopterids, myzostomids and sipunculids in the basal part of the tree, although the position of Myzostomida remains uncertain owing to its long branch. The remaining taxa are split into two clades: Errantia (which includes the model annelid Platynereis), and Sedentaria (which includes Clitellata). Ancestral character trait reconstructions indicate that these clades show adaptation to either an errant or a sedentary lifestyle, with alteration of accompanying morphological traits such as peristaltic movement, parapodia and sensory perception. Finally, life history characters in Annelida seem to be phylogenetically informative.}, language = {en} } @article{DietzeMaussionAhlbornetal.2014, author = {Dietze, Elisabeth and Maussion, F. and Ahlborn, M. and Diekmann, Bernhard and Hartmann, K. and Henkel, K. and Kasper, T. and Lockot, G. and Opitz, S. and Haberzettl, T.}, title = {Sediment transport processes across the Tibetan Plateau inferred from robust grain-size end members in lake sediments}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {10}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-10-91-2014}, pages = {91 -- 106}, year = {2014}, abstract = {Grain-size distributions offer powerful proxies of past environmental conditions that are related to sediment sorting processes. However, they are often of multimodal character because sediments can get mixed during deposition. To facilitate the use of grain size as palaeoenvironmental proxy, this study aims to distinguish the main detrital processes that contribute to lacustrine sedimentation across the Tibetan Plateau using grain-size end-member modelling analysis. Between three and five robust grain-size end-member subpopulations were distinguished at different sites from similarly-likely end-member model runs. Their main modes were grouped and linked to common sediment transport and depositional processes that can be associated with contemporary Tibetan climate (precipitation patterns and lake ice phenology, gridded wind and shear stress data from the High Asia Reanalysis) and local catchment configurations. The coarse sands and clays with grain-size modes > 250 mu m and < 2 mu m were probably transported by fluvial processes. Aeolian sands (similar to 200 mu m) and coarse local dust (similar to 60 mu m), transported by saltation and in near-surface suspension clouds, are probably related to occasional westerly storms in winter and spring. Coarse regional dust with modes similar to 25 mu m may derive from near-by sources that keep in longer term suspension. The continuous background dust is differentiated into two robust end members (modes: 5-10 and 2-5 mu m) that may represent different sources, wind directions and/or sediment trapping dynamics from long-range, upper-level westerly and episodic northerly wind transport. According to this study grain-size end members of only fluvial origin contribute small amounts to mean Tibetan lake sedimentation (19 +/- 5\%), whereas local to regional aeolian transport and background dust deposition dominate the clastic sedimentation in Tibetan lakes (contributions: 42 +/- 14\% and 51 +/- 11\%). However, fluvial and alluvial reworking of aeolian material from nearby slopes during summer seems to limit end-member interpretation and should be cross-checked with other proxy information. If not considered as a stand-alone proxy, a high transferability to other regions and sediment archives allows helpful reconstructions of past sedimentation history.}, language = {en} } @article{RamischLockotHaberzettletal.2016, author = {Ramisch, Arne and Lockot, Gregori and Haberzettl, Torsten and Hartmann, Kai and Kuhn, Gerhard and Lehmkuhl, Frank and Schimpf, Stefan and Schulte, Philipp and Stauch, Georg and Wang, Rong and Wunnemann, Bernd and Yan, Dada and Zhang, Yongzhan and Diekmann, Bernhard}, title = {A persistent northern boundary of Indian Summer Monsoon precipitation over Central Asia during the Holocene}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep25791}, pages = {596 -- 633}, year = {2016}, abstract = {Extra-tropical circulation systems impede poleward moisture advection by the Indian Summer Monsoon. In this context, the Himalayan range is believed to insulate the south Asian circulation from extra-tropical influences and to delineate the northern extent of the Indian Summer Monsoon in central Asia. Paleoclimatic evidence, however, suggests increased moisture availability in the Early Holocene north of the Himalayan range which is attributed to an intensification of the Indian Summer Monsoon. Nevertheless, mechanisms leading to a surpassing of the Himalayan range and the northern maximum extent of summer monsoonal influence remain unknown. Here we show that the Kunlun barrier on the northern Tibetan Plateau [similar to 36 degrees N] delimits Indian Summer Monsoon precipitation during the Holocene. The presence of the barrier relocates the insulation effect 1,000 km further north, allowing a continental low intensity branch of the Indian Summer Monsoon which is persistent throughout the Holocene. Precipitation intensities at its northern extent seem to be driven by differentiated solar heating of the Northern Hemisphere indicating dependency on energy-gradients rather than absolute radiation intensities. The identified spatial constraints of monsoonal precipitation will facilitate the prediction of future monsoonal precipitation patterns in Central Asia under varying climatic conditions.}, language = {en} } @article{ShkilnyyGraefHiebletal.2009, author = {Shkilnyy, Andriy and Gr{\"a}f, Ralph and Hiebl, Bernhard and Neffe, Axel T. and Friedrich, Alwin and Hartmann, Juergen and Taubert, Andreas}, title = {Unprecedented, low cytotoxicity of spongelike calcium phosphate/poly(ethylene imine) hydrogel composites}, issn = {1616-5187}, doi = {10.1002/mabi.200800266}, year = {2009}, abstract = {Covalently crosslinked PEI hydrogels are efficient templates for calcium phosphate mineralization in SBF. In contrast to the PEI hydrogels, non-crosslinked PEI does not lead to calcium phosphate nucleation and growth in SBF. The precipitate is a mixture of brushite and hydroxyapatite. The PEI/calcium phosphate composite material exhibits a sponge like morphology and a chemical composition that is interesting for implants. Cytotoxicity tests using Dictyostelium discoideum amoebae show that both the non-mineralized and mineralized hydrogels have a very low cytotoxicity. This suggests that next generation PEI hydrogels, where also the degradation products are non-toxic, could be interesting for biomedical applications.}, language = {en} } @misc{VossMeyerSchwonbecketal.2005, author = {Voss, Henning and Meyer, Jeannette and Schwonbeck, Susanne and Fritsche, Immo and Hartmann, Bernhard and Wegwarth, Odette and Friedrich, Anke and Buchheister-Knappe, Stefanie and Marwan, Norbert and Bandau, Anja and Bullinger, Hans-J{\"o}rg and Weith, Thomas}, title = {Portal alumni}, series = {Das Ehemaligen-Magazin der Universit{\"a}t Potsdam}, volume = {2005}, journal = {Das Ehemaligen-Magazin der Universit{\"a}t Potsdam}, number = {3}, organization = {Stabsstelle Studierendenmarketing/Alumniprogramm Im Auftrag der Pr{\"a}sidentin der Universit{\"a}t Potsdam}, doi = {10.25932/publishup-48160}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-481608}, pages = {58}, year = {2005}, abstract = {Liebe Leserin, lieber Leser, erforschen, was die Welt im Innersten zusammenh{\"a}lt- das ist f{\"u}r viele Studierende ein Traum. Doch welche Opfer muss man bringen, um ihn zu verwirklichen? Welche Bemfsperspektive hat der Bemf Forscher heute noch? Auch viele Absolventen der Universit{\"a}t Potsdam m{\"u}ssen sich diese Fragen beantworten. Zu welchen Antworten einige dabei gekommen sind und welche Probleme sie zu bew{\"a}ltigen haben, vom Spaß am Forschen und von Zukunfts{\"a}ngsten berichten sie in der Rubrik "Forscherkarrieren". Gelder f{\"u}r die Forschung fließen in Deutschland zu sp{\"a}rlich, verglichen mit anderen f{\"u}hrenden Industrienationen. So sind die Bedingungen f{\"u}r Forscher hierzulande nicht die besten. Manchen jungen Wissenschaftler zieht es- mitunter notgedrungen- ins Ausland. Wie Deutschland dadurch seine ZukunftsHihigkeit riskiert, thematisiert der Pr{\"a}sident der Fraunhofer-Gesellschaft, Prof. Dr. Hans-J{\"o}rg Bullinger, in der Rubrik "wissenstransfer". Auch die Universit{\"a}t ist kein Garant f{\"u}r eine gesicherte Zukunft in der Forschung. Wer sechs Jahre nach der Promotion den Sprung zur Professur nicht geschafft hat, geht einer ungewissen Zukunft als Privatdozent entgegen. Seit einigen Jahren gibt es neben der Habilitation noch einen zweiten Weg zur Professur- die Juniorprofessur. Auch an der Universit{\"a}t Potsdam gibt es seit 2002 Juniorprofessoren, von denen die ersten jetzt evaluiert wurden. N{\"a}heres dazu finden Sie ebenfalls in der Rubrik "wissenstransfer". Wer noch nach einer Finanzierungsm{\"o}glichkeit f{\"u}r seine Promotion sucht, findet Tipps in der Rubrik "wegweiser". Die Redaktion w{\"u}nscht Ihnen viel Vergn{\"u}gen beim Lesen von Portal alumni und freut sich auf zahlreiche Leserbriefe.}, language = {de} }