@article{NettelsMuellerSpaethKuesteretal.2009, author = {Nettels, Daniel and M{\"u}ller-Sp{\"a}th, Sonja and K{\"u}ster, Frank and Hofmann, Hagen and Haenni, Domminik and R{\"u}egger, Stefan and Reymond, Luc and Hoffmann, Armin S. and Kubelka, Jan and Heinz, Benjamin and Gast, Klaus and Best, Robert B. and Schuler, Benjamin}, title = {Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins}, issn = {0027-8424}, year = {2009}, abstract = {We used single-molecule FRET in combination with other biophysical methods and molecular simulations to investigate the effect of temperature on the dimensions of unfolded proteins. With singlemolecule FRET, this question can be addressed even under nearnative conditions, where most molecules are folded, allowing us to probe a wide range of denaturant concentrations and temperatures. We find a compaction of the unfolded state of a small cold shock protein with increasing temperature in both the presence and the absence of denaturant, with good agreement between the results from single-molecule FRET and dynamic light scattering. Although dissociation of denaturant from the polypeptide chain with increasing temperature accounts for part of the compaction, the results indicate an important role for additional temperaturedependent interactions within the unfolded chain. The observation of a collapse of a similar extent in the extremely hydrophilic, intrinsically disordered protein prothymosin suggests that the hydrophobic effect is not the sole source of the underlying interactions. Circular dichroism spectroscopy and replica exchange molecular dynamics simulations in explicit water show changes in secondary structure content with increasing temperature and suggest a contribution of intramolecular hydrogen bonding to unfolded state collapse.}, language = {en} } @phdthesis{Heinz2006, author = {Heinz, Benjamin}, title = {Stabilit{\"a}t und Faltung der Pektatlyase aus Bacillus subtilis : der Austausch der Asparaginleiter gegen einen hydrophoben Stapel}, address = {Potsdam}, pages = {VIII, 85, xi S. : graph. Darst.}, year = {2006}, language = {de} } @article{HahnMeyerSchroeteretal.2017, author = {Hahn, Marc Benjamin and Meyer, Susann and Schr{\"o}ter, Maria-Astrid and Seitz, Harald and Kunte, Hans-J{\"o}rg and Solomun, Tihomir and Sturm, Heinz}, title = {Direct electron irradiation of DNA in a fully aqueous environment}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {19}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, number = {3}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c6cp07707b}, pages = {1798 -- 1805}, year = {2017}, abstract = {We report on a study in which plasmid DNA in water was irradiated with 30 keV electrons generated by a scanning electron microscope and passed through a 100 nm thick Si3N4 membrane. The corresponding Monte Carlo simulations suggest that the kinetic energy spectrum of the electrons throughout the water is dominated by low energy electrons (<100 eV). The DNA radiation damage, single-strand breaks (SSBs) and double-strand breaks (DSBs), was determined by gel electrophoresis. The median lethal dose of D-1/2 = 1.7 +/- 0.3 Gy was found to be much smaller as compared to partially or fully hydrated DNA irradiated under vacuum conditions. The ratio of the DSBs to SSBs was found to be 1 : 12 as compared to 1 : 88 found for hydrated DNA. Our method enables quantitative measurements of radiation damage to biomolecules (DNA, proteins) in solutions under varying conditions (pH, salinity, co-solutes) for an electron energy range which is difficult to probe by standard methods.}, language = {en} } @article{TabaresJimenezZimmermannDietzeetal.2019, author = {Tabares Jimenez, Ximena del Carmen and Zimmermann, Heike Hildegard and Dietze, Elisabeth and Ratzmann, Gregor and Belz, Lukas and Vieth-Hillebrand, Andrea and Dupont, Lydie and Wilkes, Heinz and Mapani, Benjamin and Herzschuh, Ulrike}, title = {Vegetation state changes in the course of shrub encroachment in an African savanna since about 1850 CE and their potential drivers}, series = {Ecology and evolution}, volume = {10}, journal = {Ecology and evolution}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.5955}, pages = {962 -- 979}, year = {2019}, abstract = {Shrub encroachment has far-reaching ecological and economic consequences in many ecosystems worldwide. Yet, compositional changes associated with shrub encroachment are often overlooked despite having important effects on ecosystem functioning. We document the compositional change and potential drivers for a northern Namibian Combretum woodland transitioning into a Terminalia shrubland. We use a multiproxy record (pollen, sedimentary ancient DNA, biomarkers, compound-specific carbon (delta C-13) and deuterium (delta D) isotopes, bulk carbon isotopes (delta(13)Corg), grain size, geochemical properties) from Lake Otjikoto at high taxonomical and temporal resolution. We provide evidence that state changes in semiarid environments may occur on a scale of one century and that transitions between stable states can span around 80 years and are characterized by a unique vegetation composition. We demonstrate that the current grass/woody ratio is exceptional for the last 170 years, as supported by n-alkane distributions and the delta C-13 and delta(13)Corg records. Comparing vegetation records to environmental proxy data and census data, we infer a complex network of global and local drivers of vegetation change. While our delta D record suggests physiological adaptations of woody species to higher atmospheric pCO(2) concentration and drought, our vegetation records reflect the impact of broad-scale logging for the mining industry, and the macrocharcoal record suggests a decrease in fire activity associated with the intensification of farming. Impact of selective grazing is reflected by changes in abundance and taxonomical composition of grasses and by an increase of nonpalatable and trampling-resistant taxa. In addition, grain-size and spore records suggest changes in the erodibility of soils because of reduced grass cover. Synthesis. We conclude that transitions to an encroached savanna state are supported by gradual environmental changes induced by management strategies, which affected the resilience of savanna ecosystems. In addition, feedback mechanisms that reflect the interplay between management legacies and climate change maintain the encroached state.}, language = {en} } @article{HahnSolomunWellhausenetal.2015, author = {Hahn, Marc Benjamin and Solomun, Tihomir and Wellhausen, Robert and Hermann, Sabrina and Seitz, Harald and Meyer, Susann and Kunte, Hans-J{\"o}rg and Zeman, Johannes and Uhlig, Frank and Smiatek, Jens and Sturm, Heinz}, title = {Influence of the Compatible Solute Ectoine on the Local Water Structure: Implications for the Binding of the Protein G5P to DNA}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {119}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {49}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.5b09506}, pages = {15212 -- 15220}, year = {2015}, abstract = {Microorganisms accumulate molar concentrations of compatible solutes like ectoine to prevent proteins from denaturation. Direct structural or spectroscopic information on the mechanism and about the hydration shell around ectoine are scarce. We combined surface plasmon resonance (SPR), confocal Raman spectroscopy, molecular dynamics simulations, and density functional theory (DFT) calculations to study the local hydration shell around ectoine and its influence on the binding of a gene-S-protein (G5P) to a single-stranded DNA (dT(25)). Due to the very high hygroscopicity of ectoine, it was possible to analyze the highly stable hydration shell by confocal Raman spectroscopy. Corresponding molecular dynamics simulation results revealed a significant change of the water dielectric constant in the presence of a high molar ectoine concentration as compared to pure water. The SPR data showed that the amount of protein bound to DNA decreases in the presence of ectoine, and hence, the protein-DNA dissociation constant increases in a concentration-dependent manner. Concomitantly, the Raman spectra in terms of the amide I region revealed large changes in the protein secondary structure. Our results indicate that ectoine strongly affects the molecular recognition between the protein and the oligonudeotide, which has important consequences for osmotic regulation mechanisms.}, language = {en} } @article{HahnMeyerKunteetal.2017, author = {Hahn, Marc Benjamin and Meyer, Susann and Kunte, Hans-Jorg and Solomun, Tihomir and Sturm, Heinz}, title = {Measurements and simulations of microscopic damage to DNA in water by 30 keV electrons: A general approach applicable to other radiation sources and biological targets}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {95}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.95.052419}, pages = {8}, year = {2017}, abstract = {The determination of the microscopic dose-damage relationship for DNA in an aqueous environment is of a fundamental interest for dosimetry and applications in radiation therapy and protection. We combine GEANT4 particle-scattering simulations in water with calculations concerning the movement of biomolecules to obtain the energy deposit in the biologically relevant nanoscopic volume. We juxtaposition these results to the experimentally determined damage to obtain the dose-damage relationship at a molecular level. This approach is tested for an experimentally challenging system concerning the direct irradiation of plasmid DNA (pUC19) in water with electrons as primary particles. Here a microscopic target model for the plasmid DNA based on the relation of lineal energy and radiation quality is used to calculate the effective target volume. It was found that on average fewer than two ionizations within a 7.5-nm radius around the sugar-phosphate backbone are sufficient to cause a single strand break, with a corresponding median lethal energy deposit being E-1/2 = 6 +/- 4 eV. The presented method is applicable for ionizing radiation (e.g.,.gamma rays, x rays, and electrons) and a variety of targets, such as DNA, proteins, or cells.}, language = {en} } @article{LaunDuffusWahlefeldetal.2022, author = {Laun, Konstantin and Duffus, Benjamin R. and Wahlefeld, Stefan and Katz, Sagie and Belger, Dennis Heinz and Hildebrandt, Peter and Mroginski, Maria Andrea and Leimk{\"u}hler, Silke and Zebger, Ingo}, title = {Infrared spectroscopy flucidates the inhibitor binding sites in a metal-dependent formate dehydrogenase}, series = {Chemistry - a European journal}, journal = {Chemistry - a European journal}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.202201091}, pages = {8}, year = {2022}, abstract = {Biological carbon dioxide (CO2) reduction is an important step by which organisms form valuable energy-richer molecules required for further metabolic processes. The Mo-dependent formate dehydrogenase (FDH) from Rhodobacter capsulatus catalyzes reversible formate oxidation to CO2 at a bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor. To elucidate potential substrate binding sites relevant for the mechanism, we studied herein the interaction with the inhibitory molecules azide and cyanate, which are isoelectronic to CO2 and charged as formate. We employed infrared (IR) spectroscopy in combination with density functional theory (DFT) and inhibition kinetics. One distinct inhibitory molecule was found to bind to either a non-competitive or a competitive binding site in the secondary coordination sphere of the active site. Site-directed mutagenesis of key amino acid residues in the vicinity of the bis-MGD cofactor revealed changes in both non-competitive and competitive binding, whereby the inhibitor is in case of the latter interaction presumably bound between the cofactor and the adjacent Arg587.}, language = {en} } @article{HeitYuanWeberetal.2015, author = {Heit, Benjamin and Yuan, Xiaohui and Weber, Michael H. and Geissler, Wolfram H. and Jokat, Wilfried and Lushetile, Bufelo and Hoffmann, Karl-Heinz}, title = {Crustal thickness and V-p/V-s ratio in NW Namibia from receiver functions: Evidence for magmatic underplating due to mantle plume-crust interaction}, series = {Geophysical research letters}, volume = {42}, journal = {Geophysical research letters}, number = {9}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2015GL063704}, pages = {3330 -- 3337}, year = {2015}, abstract = {A seismological network was operated at the junction of the aseismic Walvis Ridge with the northwestern Namibian coast. We mapped crustal thickness and bulk V-p/V-s ratio by the H-k analysis of receiver functions. In the Damara Belt, the crustal thickness is similar to 35km with a V-p/V-s ratio of <1.75. The crust is similar to 30km thick at the coast in the Kaoko Belt. Strong variations in crustal thickness and V-p/V-s ratios are found at the landfall of the Walvis Ridge. Here and at similar to 150km northeast of the coast, the crustal thickness increases dramatically reaching 44km and the V-p/V-s ratios are extremely high (similar to 1.89). These anomalies are interpreted as magmatic underplating produced by the mantle plume during the breakup of Gondwana. The area affected by the plume is smaller than 300km in diameter, possibly ruling out the existence of a large plume head under the continent during the breakup.}, language = {en} }