@article{Baumann1998, author = {Baumann, Otto}, title = {The Golgi apparatus in honeybee photoreceptor cells: Structural organization and spatial relationship to microtubules and actin filaments}, year = {1998}, language = {en} } @article{MareljaChowdhuryDoscheetal.2013, author = {Marelja, Zvonimir and Chowdhury, Mita Mullick and Dosche, Carsten and Hille, Carsten and Baumann, Otto and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Leimk{\"u}hler, Silke}, title = {The L-cysteine desulfurase NFS1 is localized in the cytosol where it provides the sulfur for molybdenum cofactor biosynthesis in humans}, series = {PLoS one}, volume = {8}, journal = {PLoS one}, number = {4}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0060869}, pages = {13}, year = {2013}, abstract = {In humans, the L-cysteine desulfurase NFS1 plays a crucial role in the mitochondrial iron-sulfur cluster biosynthesis and in the thiomodification of mitochondrial and cytosolic tRNAs. We have previously demonstrated that purified NFS1 is able to transfer sulfur to the C-terminal domain of MOCS3, a cytosolic protein involved in molybdenum cofactor biosynthesis and tRNA thiolation. However, no direct evidence existed so far for the interaction of NFS1 and MOCS3 in the cytosol of human cells. Here, we present direct data to show the interaction of NFS1 and MOCS3 in the cytosol of human cells using Forster resonance energy transfer and a split-EGFP system. The colocalization of NFS1 and MOCS3 in the cytosol was confirmed by immunodetection of fractionated cells and localization studies using confocal fluorescence microscopy. Purified NFS1 was used to reconstitute the lacking molybdoenzyme activity of the Neurospora crassa nit-1 mutant, giving additional evidence that NFS1 is the sulfur donor for Moco biosynthesis in eukaryotes in general.}, language = {en} } @article{GuljamowDelissenBaumannetal.2012, author = {Guljamow, Arthur and Delissen, Friedmar and Baumann, Otto and Thuenemann, Andreas F. and Dittmann-Th{\"u}nemann, Elke}, title = {Unique properties of eukaryote-type actin and profilin horizontally transferred to cyanobacteria}, series = {PLoS one}, volume = {7}, journal = {PLoS one}, number = {1}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0029926}, pages = {221 -- 231}, year = {2012}, abstract = {A eukaryote-type actin and its binding protein profilin encoded on a genomic island in the cyanobacterium Microcystis aeruginosa PCC 7806 co-localize to form a hollow, spherical enclosure occupying a considerable intracellular space as shown by in vivo fluorescence microscopy. Biochemical and biophysical characterization reveals key differences between these proteins and their eukaryotic homologs. Small-angle X-ray scattering shows that the actin assembles into elongated, filamentous polymers which can be visualized microscopically with fluorescent phalloidin. Whereas rabbit actin forms thin cylindrical filaments about 100 mu m in length, cyanobacterial actin polymers resemble a ribbon, arrest polymerization at 510 lam and tend to form irregular multi-strand assemblies. While eukaryotic profilin is a specific actin monomer binding protein, cyanobacterial profilin shows the unprecedented property of decorating actin filaments. Electron micrographs show that cyanobacterial profilin stimulates actin filament bundling and stabilizes their lateral alignment into heteropolymeric sheets from which the observed hollow enclosure may be formed. We hypothesize that adaptation to the confined space of a bacterial cell devoid of binding proteins usually regulating actin polymerization in eukaryotes has driven the co-evolution of cyanobacterial actin and profilin, giving rise to an intracellular entity.}, language = {en} }