@article{KumarGoodwinUhouseetal.2015, author = {Kumar, Kevin K. and Goodwin, Cody R. and Uhouse, Michael A. and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael A. and McLean, John A. and Bowman, Aaron B.}, title = {Untargeted metabolic profiling identifies interactions between Huntington's disease and neuronal manganese status}, series = {Metallomics}, volume = {7}, journal = {Metallomics}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1756-591X}, doi = {10.1039/C4MT00223G}, pages = {363 -- 370}, year = {2015}, abstract = {Manganese (Mn) is an essential micronutrient for development and function of the nervous system. Deficiencies in Mn transport have been implicated in the pathogenesis of Huntington's disease (HD), an autosomal dominant neurodegenerative disorder characterized by loss of medium spiny neurons of the striatum. Brain Mn levels are highest in striatum and other basal ganglia structures, the most sensitive brain regions to Mn neurotoxicity. Mouse models of HD exhibit decreased striatal Mn accumulation and HD striatal neuron models are resistant to Mn cytotoxicity. We hypothesized that the observed modulation of Mn cellular transport is associated with compensatory metabolic responses to HD pathology. Here we use an untargeted metabolomics approach by performing ultraperformance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS) on control and HD immortalized mouse striatal neurons to identify metabolic disruptions under three Mn exposure conditions, low (vehicle), moderate (non-cytotoxic) and high (cytotoxic). Our analysis revealed lower metabolite levels of pantothenic acid, and glutathione (GSH) in HD striatal cells relative to control cells. HD striatal cells also exhibited lower abundance and impaired induction of isobutyryl carnitine in response to increasing Mn exposure. In addition, we observed induction of metabolites in the pentose shunt pathway in HD striatal cells after high Mn exposure. These findings provide metabolic evidence of an interaction between the HD genotype and biologically relevant levels of Mn in a striatal cell model with known HD by Mn exposure interactions. The metabolic phenotypes detected support existing hypotheses that changes in energetic processes underlie the pathobiology of both HD and Mn neurotoxicity.}, language = {en} } @misc{KumarGoodwinUhouseetal.2015, author = {Kumar, Kevin K. and Goodwin, Cody R. and Uhouse, Michael A. and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael A. and McLean, John A. and Bowman, Aaron B.}, title = {Untargeted metabolic profiling identifies interactions between Huntington's disease and neuronal manganese status}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94314}, pages = {363 -- 370}, year = {2015}, abstract = {Manganese (Mn) is an essential micronutrient for development and function of the nervous system. Deficiencies in Mn transport have been implicated in the pathogenesis of Huntington's disease (HD), an autosomal dominant neurodegenerative disorder characterized by loss of medium spiny neurons of the striatum. Brain Mn levels are highest in striatum and other basal ganglia structures, the most sensitive brain regions to Mn neurotoxicity. Mouse models of HD exhibit decreased striatal Mn accumulation and HD striatal neuron models are resistant to Mn cytotoxicity. We hypothesized that the observed modulation of Mn cellular transport is associated with compensatory metabolic responses to HD pathology. Here we use an untargeted metabolomics approach by performing ultraperformance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS) on control and HD immortalized mouse striatal neurons to identify metabolic disruptions under three Mn exposure conditions, low (vehicle), moderate (non-cytotoxic) and high (cytotoxic). Our analysis revealed lower metabolite levels of pantothenic acid, and glutathione (GSH) in HD striatal cells relative to control cells. HD striatal cells also exhibited lower abundance and impaired induction of isobutyryl carnitine in response to increasing Mn exposure. In addition, we observed induction of metabolites in the pentose shunt pathway in HD striatal cells after high Mn exposure. These findings provide metabolic evidence of an interaction between the HD genotype and biologically relevant levels of Mn in a striatal cell model with known HD by Mn exposure interactions. The metabolic phenotypes detected support existing hypotheses that changes in energetic processes underlie the pathobiology of both HD and Mn neurotoxicity.}, language = {en} } @inproceedings{TidballKumarBryanetal.2015, author = {Tidball, Andrew M. and Kumar, Kevin K. and Bryan, Miles R. and Bichell, Terry Jo and Horning, Kyle and Uhouse, Michael A. and Goodwin, Cody R. and Bornhorst, Julia and Schwerdtle, Tanja and Neely, Maja Diana and McClean, John A. and Aschner, Michael A. and Bowman, Aaron B.}, title = {Deficits in neural responses to manganese exposure in Huntington's disease models}, series = {Neurotoxicology and teratology}, volume = {49}, booktitle = {Neurotoxicology and teratology}, publisher = {Elsevier}, address = {Oxford}, issn = {0892-0362}, doi = {10.1016/j.ntt.2015.04.022}, pages = {105 -- 105}, year = {2015}, language = {en} } @article{KumarGoodwinUhouseetal.2015, author = {Kumar, Kevin K. and Goodwin, Cody R. and Uhouse, Michael A. and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael A. and McLean, John A. and Bowman, Aaron B.}, title = {Untargeted metabolic profiling identifies interactions between}, series = {Metallomics : integrated biometal science}, volume = {7}, journal = {Metallomics : integrated biometal science}, number = {2}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/c4mt00223g}, pages = {363 -- 370}, year = {2015}, language = {en} } @article{GubertPuntelLehmenetal.2016, author = {Gubert, Priscila and Puntel, Bruna and Lehmen, Tassia and Bornhorst, Julia and Avila, Daiana Silva and Aschner, Michael A. and Soares, Felix A. A.}, title = {Reversible reprotoxic effects of manganese through DAF-16 transcription factor activation and vitellogenin downregulation in Caenorhabditis elegans}, series = {Life sciences : molecular, cellular and functional basis of therapy}, volume = {151}, journal = {Life sciences : molecular, cellular and functional basis of therapy}, publisher = {Elsevier}, address = {Oxford}, issn = {0024-3205}, doi = {10.1016/j.lfs.2016.03.016}, pages = {218 -- 223}, year = {2016}, abstract = {Aims Vitellogenesis is the yolk production process which provides the essential nutrients for the developing embryos. Yolk is a lipoprotein particle that presents lipids and lipid-binding proteins, referred to as vitellogenins (VIT). The Caenorhabditis elegans nematode has six genes encoding VIT lipoproteins. Several pathways are known to regulate vitellogenesis, including the DAF-16 transcription factor. Some reports have shown that heavy metals, such as manganese (Mn), impair brood size in C. elegans; however the mechanisms associated with this effect have yet to be identified. Our aim was to evaluate Mn\&\#8242;s effects on C. elegans reproduction and better understand the pathways related to these effects. Main methods. Young adult larval stage worms were treated for 4 h with Mn in 85 mM NaCl and Escherichia coli OP50 medium. Key findings. Mn reduced egg-production and egg-laying during the first 24 h after the treatment, although the total number of progenies were indistinguishable from the control group levels. This delay may have occurred due to DAF-16 activation, which was noted only after the treatment and was not apparent 24 h later. Moreover, the expression, protein levels and green fluorescent protein (GFP) fluorescence associated with VIT were decreased soon after Mn treatment and recovered after 24 h. Significance Combined, these data suggest that the delay in egg-production is likely regulated by DAF-16 and followed by the inhibition of VIT transport activity. Further studies are needed to clarify the mechanisms associated with Mn-induced DAF-16 activation.}, language = {en} } @misc{AschnerPalinskiSperlingetal.2017, author = {Aschner, Michael A. and Palinski, Catherine and Sperling, Michael and Karst, U. and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Imaging metals in Caenorhabditis elegans}, series = {Metallomics : integrated biometal science}, volume = {9}, journal = {Metallomics : integrated biometal science}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/c6mt00265j}, pages = {357 -- 364}, year = {2017}, abstract = {Systemic trafficking and storage of essential metal ions play fundamental roles in living organisms by serving as essential cofactors in various cellular processes. Thereby metal quantification and localization are critical steps in understanding metal homeostasis, and how their dyshomeostasis might contribute to disease etiology and the ensuing pathologies. Furthermore, the amount and distribution of metals in organisms can provide insight into their underlying mechanisms of toxicity and toxicokinetics. While in vivo studies on metal imaging in mammalian experimental animals are complex, time- and resource-consuming, the nematode Caenorhabditis elegans (C. elegans) provides a suitable comparative and complementary model system. Expressing homologous genes to those inherent to mammals, including those that regulate metal homeostasis and transport, C. elegans has become a powerful tool to study metal homeostasis and toxicity. A number of recent technical advances have been made in the development and application of analytical methods to visualize metal ions in C. elegans. Here, we briefly summarize key findings and challenges of the three main techniques and their application to the nematode, namely sensing fluorophores, microbeam synchrotron radiation X-ray fluorescence as well as laser ablation ( LA) coupled to inductively coupled plasma-mass spectrometry (ICP-MS).}, language = {en} } @article{GubertPuntelLehmenetal.2018, author = {Gubert, Priscila and Puntel, Bruna and Lehmen, Tassia and Fessel, Joshua P. and Cheng, Pan and Bornhorst, Julia and Trindade, Lucas Siqueira and Avila, Daiana S. and Aschner, Michael and Soares, Felix A. A.}, title = {Metabolic effects of manganese in the nematode Caenorhabditis elegans through DAergic pathway and transcription factors activation}, series = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, volume = {67}, journal = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0161-813X}, doi = {10.1016/j.neuro.2018.04.008}, pages = {65 -- 72}, year = {2018}, abstract = {Manganese (Mn) is an essential trace element for physiological functions since it acts as an enzymatic co-factor. Nevertheless, overexposure to Mn has been associated with a pathologic condition called manganism. Furthermore, Mn has been reported to affect lipid metabolism by mechanisms which have yet to be established. Herein, we used the nematode Caenorhabditis elegans to examine Mn's effects on the dopaminergic (DAergic) system and determine which transcription factors that regulate with lipid metabolism are affected by it. Worms were exposed to Mn for four hours in the presence of bacteria and in a liquid medium (85 mM NaCl). Mn increased fat storage as evidenced both by Oil Red O accumulation and triglyceride levels. In addition, metabolic activity was reduced as a reflection of decreased oxygen consumption caused by Mn. Mn also affected feeding behavior as evidenced by decreased pharyngeal pumping rate. DAergic neurons viability were not altered by Mn, however the dopamine levels were significantly reduced following Mn exposure. Furthermore, the expression of sbp-1 transcription factor and let-363 protein kinase responsible for lipid accumulation control was increased and decreased, respectively, by Mn. Altogether, our data suggest that Mn increases the fat storage in C. elegans, secondary to DAergic system alterations, under the control of SBP-1 and LET-363 proteins.}, language = {en} } @article{RuszkiewiczdeMacedoMirandaVizueteetal.2019, author = {Ruszkiewicz, Joanna A. and de Macedo, Gabriel Teixeira and Miranda-Vizuete, Antonio and Bowman, Aaron B. and Bornhorst, Julia and Schwerdtle, Tanja and Antunes Soares, Felix A. and Aschner, Michael}, title = {Sex-Specific response of caenorhabditis elegans to Methylmercury Toxicity}, series = {Neurotoxicity Research}, volume = {35}, journal = {Neurotoxicity Research}, number = {1}, publisher = {Springer}, address = {New York}, issn = {1029-8428}, doi = {10.1007/s12640-018-9949-4}, pages = {208 -- 216}, year = {2019}, abstract = {Methylmercury (MeHg), an abundant environmental pollutant, has long been known to adversely affect neurodevelopment in both animals and humans. Several reports from epidemiological studies, as well as experimental data indicate sex-specific susceptibility to this neurotoxicant; however, the molecular bases of this process are still not clear. In the present study, we used Caenorhabditis elegans (C. elegans), to investigate sex differences in response to MeHg toxicity during development. Worms at different developmental stage (L1, L4, and adult) were treated with MeHg for 1h. Lethality assays revealed that male worms exhibited significantly higher resistance to MeHg than hermaphrodites, when at L4 stage or adults. However, the number of worms with degenerated neurons was unaffected by MeHg, both in males and hermaphrodites. Lower susceptibility of males was not related to changes in mercury (Hg) accumulation, which was analogous for both wild-type (wt) and male-rich him-8 strain. Total glutathione (GSH) levels decreased upon MeHg in him-8, but not in wt. Moreover, the sex-dependent response of the cytoplasmic thioredoxin system was observedmales exhibited significantly higher expression of thioredoxin TRX-1, and thioredoxin reductase TRXR-1 expression was downregulated upon MeHg treatment only in hermaphrodites. These outcomes indicate that the redox status is an important contributor to sex-specific sensitivity to MeHg in C. elegans.}, language = {en} } @article{ChenDeWittBornhorstetal.2015, author = {Chen, Pan and DeWitt, Margaret R. and Bornhorst, Julia and Soares, Felix A. and Mukhopadhyay, Somshuvra and Bowman, Aaron B. and Aschner, Michael A.}, title = {Age- and manganese-dependent modulation of dopaminergic phenotypes in a}, series = {Metallomics : integrated biometal science}, volume = {7}, journal = {Metallomics : integrated biometal science}, number = {2}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/c4mt00292j}, pages = {289 -- 298}, year = {2015}, language = {en} } @article{CroneAschnerSchwerdtleetal.2015, author = {Crone, Barbara and Aschner, Michael A. and Schwerdtle, Tanja and Karst, Uwe and Bornhorst, Julia}, title = {Elemental bioimaging of Cisplatin in Caenorhabditis elegans by LA-ICP-MS}, series = {Metallomics}, volume = {2015}, journal = {Metallomics}, number = {7}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-591X}, doi = {10.1039/c5mt00096c}, pages = {1189 -- 1195}, year = {2015}, abstract = {cis-Diamminedichloroplatinum(II) (Cisplatin) is one of the most important and frequently used cytostatic drugs for the treatment of various solid tumors. Herein, a laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method incorporating a fast and simple sample preparation protocol was developed for the elemental mapping of Cisplatin in the model organism Caenorhabditis elegans (C. elegans). The method allows imaging of the spatially-resolved elemental distribution of platinum in the whole organism with respect to the anatomic structure in L4 stage worms at a lateral resolution of 5 μm. In addition, a dose- and time-dependent Cisplatin uptake was corroborated quantitatively by a total reflection X-ray fluorescence spectroscopy (TXRF) method, and the elemental mapping indicated that Cisplatin is located in the intestine and in the head of the worms. Better understanding of the distribution of Cisplatin in this well-established model organism will be instrumental in deciphering Cisplatin toxicity and pharmacokinetics. Since the cytostatic effect of Cisplatin is based on binding the DNA by forming intra- and interstrand crosslinks, the response of poly(ADP-ribose)metabolism enzyme 1 (pme-1) deletion mutants to Cisplatin was also examined. Loss of pme-1, which is the C. elegans ortholog of human poly(ADP-ribose) polymerase 1 (PARP-1) led to disturbed DNA damage response. With respect to survival and brood size, pme-1 deletion mutants were more sensitive to Cisplatin as compared to wildtype worms, while Cisplatin uptake was indistinguishable.}, language = {en} } @article{HenzeHomannRohnetal.2016, author = {Henze, Andrea and Homann, Thomas and Rohn, Isabelle and Aschner, Michael A. and Link, Christopher D. and Kleuser, Burkhard and Schweigert, Florian J. and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep37346}, pages = {12}, year = {2016}, abstract = {The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time- and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization - time of flight - mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling.}, language = {en} } @misc{ChenBornhorstAschner2018, author = {Chen, Pan and Bornhorst, Julia and Aschner, Michael A.}, title = {Manganese metabolism in humans}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {711}, issn = {1866-8372}, doi = {10.25932/publishup-42743}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427432}, pages = {25}, year = {2018}, abstract = {Manganese (Mn) is an essential nutrient for intracellular activities; it functions as a cofactor for a variety of enzymes, including arginase, glutamine synthetase (GS), pyruvate carboxylase and Mn superoxide dismutase (Mn-SOD). Through these metalloproteins, Mn plays critically important roles in development, digestion, reproduction, antioxidant defense, energy production, immune response and regulation of neuronal activities. Mn deficiency is rare. In contrast Mn poisoning may be encountered upon overexposure to this metal. Excessive Mn tends to accumulate in the liver, pancreas, bone, kidney and brain, with the latter being the major target of Mn intoxication. Hepatic cirrhosis, polycythemia, hypermanganesemia, dystonia and Parkinsonism-like symptoms have been reported in patients with Mn poisoning. In recent years, Mn has come to the forefront of environmental concerns due to its neurotoxicity. Molecular mechanisms of Mn toxicity include oxidative stress, mitochondrial dysfunction, protein misfolding, endoplasmic reticulum (ER) stress, autophagy dysregulation, apoptosis, and disruption of other metal homeostasis. The mechanisms of Mn homeostasis are not fully understood. Here, we will address recent progress in Mn absorption, distribution and elimination across different tissues, as well as the intracellular regulation of Mn homeostasis in cells. We will conclude with recommendations for future research areas on Mn metabolism.}, language = {en} } @misc{HenzeHomannRohnetal.2016, author = {Henze, Andrea and Homann, Thomas and Rohn, Isabelle and Aschner, Michael A. and Link, Christopher D. and Kleuser, Burkhard and Schweigert, Florian J. and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103674}, pages = {12}, year = {2016}, abstract = {The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time- and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization - time of flight - mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling.}, language = {en} } @misc{ChakrabortyChenBornhorstetal.2015, author = {Chakraborty, Sudipta and Chen, Pan and Bornhorst, Julia and Schwerdtle, Tanja and Schumacher, Fabian and Kleuser, Burkhard and Bowman, Aaron B. and Aschner, Michael A.}, title = {Loss of pdr-1/parkin influences Mn homeostasis through altered ferroportin expression in C. elegans}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99508}, pages = {10}, year = {2015}, abstract = {Overexposure to the essential metal manganese (Mn) can result in an irreversible condition known as manganism that shares similar pathophysiology with Parkinson's disease (PD), including dopaminergic (DAergic) cell loss that leads to motor and cognitive impairments. However, the mechanisms behind this neurotoxicity and its relationship with PD remain unclear. Many genes confer risk for autosomal recessive, early-onset PD, including the parkin/PARK2 gene that encodes for the E3 ubiquitin ligase Parkin. Using Caenorhabditis elegans (C. elegans) as an invertebrate model that conserves the DAergic system, we previously reported significantly increased Mn accumulation in pdr-1/parkin mutants compared to wildtype (WT) animals. For the current study, we hypothesize that this enhanced accumulation is due to alterations in Mn transport in the pdr-1 mutants. While no change in mRNA expression of the major Mn importer proteins (smf-1-3) was found in pdr-1 mutants, significant downregulation in mRNA levels of the putative Mn exporter ferroportin (fpn-1.1) was observed. Using a strain overexpressing fpn-1.1 in worms lacking pdr-1, we show evidence for attenuation of several endpoints of Mn-induced toxicity, including survival, metal accumulation, mitochondrial copy number and DAergic integrity, compared to pdr-1 mutants alone. These changes suggest a novel role of pdr-1 in modulating Mn export through altered transporter expression, and provides further support of metal dyshomeostasis as a component of Parkinsonism pathophysiology.}, language = {en} } @misc{AvilaBenedettoAuetal.2016, author = {Avila, Daiana Silva and Benedetto, Alexandre and Au, Catherine and Bornhorst, Julia and Aschner, Michael A.}, title = {Involvement of heat shock proteins on Mn-induced toxicity in Caenorhabditis elegans}, series = {BMC pharmacology and toxicology}, journal = {BMC pharmacology and toxicology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407286}, pages = {9}, year = {2016}, abstract = {Background: All living cells display a rapid molecular response to adverse environmental conditions, and the heat shock protein family reflects one such example. Hence, failing to activate heat shock proteins can impair the cellular response. In the present study, we evaluated whether the loss of different isoforms of heat shock protein ( hsp ) genes in Caenorhabditis elegans would affect their vulnerability to Manganese (Mn) toxicity. Methods: We exposed wild type and selected hsp mutant worms to Mn (30 min) and next evaluated further the most susceptible strains. We analyzed survi val, protein carbonylation (as a marker of oxidative stress) and Parkinson ' s disease related gene expression immediately after Mn exposure. Lastly, we observed dopaminergic neurons in wild type worms and in hsp-70 mutants following Mn treatment. Analysis of the data was performed by one-way or two way ANOVA, depending on the case, followed by post-hoc Bonferroni test if the overall p value was less than 0.05. Results: We verified that the loss of hsp-70, hsp-3 and chn-1 increased the vulnerability to Mn, as exposed mutant worms showed lower survival rate and increased protein oxidation. The importance of hsp-70 against Mn toxicity was then corroborated in dopaminergic neurons, where Mn neurotoxicity was aggravated. The lack of hsp-70 also blocked the transcriptional upregulation of pink1 , a gene that has been linked to Parkinson ' sdisease. Conclusions: Taken together, our data suggest that Mn exposu re modulates heat shock protein expression, particularly HSP-70, in C. elegans .Furthermore,lossof hsp-70 increases protein oxidation and dopaminergic neuronal degeneration following manganese exposure, which is associated with the inhibition of pink1 increased expression, thus pot entially exacerbating the v ulnerability to this metal.}, language = {en} } @misc{CroneAschnerSchwerdtleetal.2015, author = {Crone, Barbara and Aschner, Michael A. and Schwerdtle, Tanja and Karst, Uwe and Bornhorst, Julia}, title = {Elemental bioimaging of Cisplatin in Caenorhabditis elegans by LA-ICP-MS}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-80031}, pages = {1189 -- 1195}, year = {2015}, abstract = {cis-Diamminedichloroplatinum(II) (Cisplatin) is one of the most important and frequently used cytostatic drugs for the treatment of various solid tumors. Herein, a laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method incorporating a fast and simple sample preparation protocol was developed for the elemental mapping of Cisplatin in the model organism Caenorhabditis elegans (C. elegans). The method allows imaging of the spatially-resolved elemental distribution of platinum in the whole organism with respect to the anatomic structure in L4 stage worms at a lateral resolution of 5 μm. In addition, a dose- and time-dependent Cisplatin uptake was corroborated quantitatively by a total reflection X-ray fluorescence spectroscopy (TXRF) method, and the elemental mapping indicated that Cisplatin is located in the intestine and in the head of the worms. Better understanding of the distribution of Cisplatin in this well-established model organism will be instrumental in deciphering Cisplatin toxicity and pharmacokinetics. Since the cytostatic effect of Cisplatin is based on binding the DNA by forming intra- and interstrand crosslinks, the response of poly(ADP-ribose)metabolism enzyme 1 (pme-1) deletion mutants to Cisplatin was also examined. Loss of pme-1, which is the C. elegans ortholog of human poly(ADP-ribose) polymerase 1 (PARP-1) led to disturbed DNA damage response. With respect to survival and brood size, pme-1 deletion mutants were more sensitive to Cisplatin as compared to wildtype worms, while Cisplatin uptake was indistinguishable.}, language = {en} } @article{PeresEyngLopesetal.2015, author = {Peres, Tanara V. and Eyng, Helena and Lopes, Samantha C. and Colle, Dirleise and Goncalves, Filipe M. and Venske, Debora K. R. and Lopes, Mark W. and Ben, Juliana and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael A. and Farina, Marcelo and Prediger, Rui D. and Leal, Rodrigo B.}, title = {Developmental exposure to manganese induces lasting motor and cognitive impairment in rats}, series = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, volume = {50}, journal = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0161-813X}, doi = {10.1016/j.neuro.2015.07.005}, pages = {28 -- 37}, year = {2015}, abstract = {Exposure to high manganese (Mn) levels may damage the basal ganglia, leading to a syndrome analogous to Parkinson's disease, with motor and cognitive impairments. The molecular mechanisms underlying Mn neurotoxicity, particularly during development, still deserve further investigation. Herein, we addressed whether early-life Mn exposure affects motor coordination and cognitive function in adulthood and potential underlying mechanisms. Male Wistar rats were exposed intraperitoneally to saline (control) or MnCl2 (5, 10 or 20 mg/kg/day) from post-natal day (PND) 8-12. Behavioral tests were performed on PND 60-65 and biochemical analysis in the striatum and hippocampus were performed on PND14 or PND70. Rats exposed to Mn (10 and 20 mg/kg) performed significantly worse on the rotarod test than controls indicating motor coordination and balance impairments. The object and social recognition tasks were used to evaluate short-term memory. Rats exposed to the highest Mn dose failed to recognize a familiar object when replaced by a novel object as well as to recognize a familiar juvenile rat after a short period of time. However, Mn did not alter olfactory discrimination ability. In addition, Mn-treated rats displayed decreased levels of non-protein thiols (e.g. glutathione) and increased levels of glial fibrillary acidic protein (GFAP) in the striatum. Moreover, Mn significantly increased hippocampal glutathione peroxidase (GPx) activity. These findings demonstrate that acute low-level exposure to Mn during a critical neurodevelopmental period causes cognitive and motor dysfunctions that last into adulthood, that are accompanied by alterations in antioxidant defense system in both the hippocampus and striatum. (C) 2015 Elsevier Inc. All rights reserved.}, language = {en} } @article{HenzeHomannRohnetal.2016, author = {Henze, Andrea and Homann, Thomas and Rohn, Isabelle and Aschner, Michael A. and Link, Christopher D. and Kleuser, Burkhard and Schweigert, Florian J. and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep37346}, pages = {12}, year = {2016}, abstract = {The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time-and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization - time of flight - mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling.}, language = {en} } @article{CroneAschnerSchwerdtleetal.2015, author = {Crone, Barbara and Aschner, Michael A. and Schwerdtle, Tanja and Karst, Uwe and Bornhorst, Julia}, title = {Elemental bioimaging of Cisplatin in Caenorhabditis elegans by LA-ICP-MS}, series = {Metallomics : integrated biometal science}, volume = {7}, journal = {Metallomics : integrated biometal science}, number = {7}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/c5mt00096c}, pages = {1189 -- 1195}, year = {2015}, abstract = {cis-Diamminedichloroplatinum(II) (Cisplatin) is one of the most important and frequently used cytostatic drugs for the treatment of various solid tumors. Herein, a laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method incorporating a fast and simple sample preparation protocol was developed for the elemental mapping of Cisplatin in the model organism Caenorhabditis elegans (C. elegans). The method allows imaging of the spatially-resolved elemental distribution of platinum in the whole organism with respect to the anatomic structure in L4 stage worms at a lateral resolution of 5 mm. In addition, a dose- and time-dependent Cisplatin uptake was corroborated quantitatively by a total reflection X-ray fluorescence spectroscopy (TXRF) method, and the elemental mapping indicated that Cisplatin is located in the intestine and in the head of the worms. Better understanding of the distribution of Cisplatin in this well-established model organism will be instrumental in deciphering Cisplatin toxicity and pharmacokinetics. Since the cytostatic effect of Cisplatin is based on binding the DNA by forming intra- and interstrand crosslinks, the response of poly(ADP-ribose) metabolism enzyme 1 (pme-1) deletion mutants to Cisplatin was also examined. Loss of pme-1, which is the C. elegans ortholog of human poly(ADP-ribose) polymerase 1 (PARP-1) led to disturbed DNA damage response. With respect to survival and brood size, pme-1 deletion mutants were more sensitive to Cisplatin as compared to wildtype worms, while Cisplatin uptake was indistinguishable.}, language = {en} } @article{ChakrabortyChenBornhorstetal.2015, author = {Chakraborty, Sudipta and Chen, Pan and Bornhorst, Julia and Schwerdtle, Tanja and Schumacher, Fabian and Kleuser, Burkhard and Bowman, Aaron B. and Aschner, Michael A.}, title = {Loss of pdr-1/parkin influences Mn homeostasis through altered ferroportin expression in C-elegans}, series = {Metallomics : integrated biometal science}, volume = {7}, journal = {Metallomics : integrated biometal science}, number = {5}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/c5mt00052a}, pages = {847 -- 856}, year = {2015}, language = {en} } @article{RuszkiewiczdeMacedoMirandaVizueteetal.2018, author = {Ruszkiewicz, Joanna A. and de Macedo, Gabriel Teixeira and Miranda-Vizuete, Antonio and Teixeira da Rocha, Joao B. and Bowman, Aaron B. and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael}, title = {The cytoplasmic thioredoxin system in Caenorhabditis elegans affords protection from methylmercury in an age-specific manner}, series = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, volume = {68}, journal = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0161-813X}, doi = {10.1016/j.neuro.2018.08.007}, pages = {189 -- 202}, year = {2018}, abstract = {Methylmercury (MeHg) is an environmental pollutant linked to many neurological defects, especially in developing individuals. The thioredoxin (TRX) system is a key redox regulator affected by MeHg toxicity, however the mechanisms and consequences of MeHg-induced dysfunction are not completely understood. This study evaluated the role of the TRX system in C. elegans susceptibility to MeHg during development. Worms lacking or overexpressing proteins from the TRX family were exposed to MeHg for 1 h at different developmental stage: L1, L4 and adult. Worms without cytoplasmic thioredoxin system exhibited age-specific susceptibility to MeHg when compared to wild-type (wt). This susceptibility corresponded partially to decreased total glutathione (GSH) levels and enhanced degeneration of dopaminergic neurons. In contrast, the overexpression of the cytoplasmic system TRX-1/TRXR-1 did not provide substantial protection against MeHg. Moreover, transgenic worms exhibited decreased protein expression for cytoplasmic thioredoxin reductase (TRXR-1). Both mitochondrial thioredoxin system TRX-2/TRXR-2, as well as other thioredoxin-like proteins: TRX-3, TRX-4, TRX-5 did not show significant role in C. elegans resistance to MeHg. Based on the current findings, the cytoplasmic thioredoxin system TRX-1/TRXR-1 emerges as an important age-sensitive protectant against MeHg toxicity in C. elegans.}, language = {en} } @article{SchumacherChakrabortyKleuseretal.2015, author = {Schumacher, Fabian and Chakraborty, Sudipta and Kleuser, Burkhard and Gulbins, Erich and Schwerdtle, Tanja and Aschner, Michael A. and Bornhorst, Julia}, title = {Highly sensitive isotope-dilution liquid-chromatography-electrospray ionization-tandem-mass spectrometry approach to study the drug-mediated modulation of dopamine and serotonin levels in Caenorhabditis elegans}, series = {Talanta : the international journal of pure and applied analytical chemistry}, volume = {144}, journal = {Talanta : the international journal of pure and applied analytical chemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0039-9140}, doi = {10.1016/j.talanta.2015.05.057}, pages = {71 -- 79}, year = {2015}, abstract = {Dopamine (DA) and serotonin (SRT) are monoamine neurotransmitters that play a key role in regulating the central and peripheral nervous system. Their impaired metabolism has been implicated in several neurological disorders, such as Parkinson's disease and depression. Consequently, it is imperative to monitor changes in levels of these low-abundant neurotransmitters and their role in mediating disease. For the first time, a rapid, specific and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of DA and SRT in the nematode Caenorhabditis elegans (C. elegans). This model organism offers a unique approach for studying the effect of various drugs and environmental conditions on neurotransmitter levels, given by the conserved DA and SRT biology, including synaptic release, trafficking and formation. We introduce a novel sample preparation protocol incorporating the usage of sodium thiosulfate in perchloric acid as extraction medium that assures high recovery of the relatively unstable neurotransmitters monitored. Moreover, the use of both deuterated internal standards and the multiple reaction monitoring (MRM) technique allows for unequivocal quantification. Thereby, to the best of our knowledge, we achieve a detection sensitivity that clearly exceeds those of published DA and SRT quantification methods in various matrices. We are the first to show that exposure of C elegans to the monoamine oxidase B (MAOB) inhibitor selegiline or the catechol-O-methyltransferase (COMT) inhibitor tolcapone, in order to block DA and SRT degradation, resulted in accumulation of the respective neurotransmitter. Assessment of a behavioral output of the dopaminergic system (basal slowing response) corroborated the analytical LC-MS/MS data. Thus, utilization of the C elegans model system in conjunction with our analytical method is well-suited to investigate drug-mediated modulation of the DA and SRT system in order to identify compounds with neuroprotective or regenerative properties. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{AvilaBenedettoAuetal.2016, author = {Avila, Daiana Silva and Benedetto, Alexandre and Au, Catherine and Bornhorst, Julia and Aschner, Michael A.}, title = {Involvement of heat shock proteins on Mn-induced toxicity in Caenorhabditis elegans}, series = {Plant Methods}, volume = {17}, journal = {Plant Methods}, publisher = {BioMed Central}, address = {London}, issn = {2050-6511}, doi = {10.1186/s40360-016-0097-2}, pages = {9}, year = {2016}, abstract = {Background: All living cells display a rapid molecular response to adverse environmental conditions, and the heat shock protein family reflects one such example. Hence, failing to activate heat shock proteins can impair the cellular response. In the present study, we evaluated whether the loss of different isoforms of heat shock protein (hsp) genes in Caenorhabditis elegans would affect their vulnerability to Manganese (Mn) toxicity. Conclusions: Taken together, our data suggest that Mn exposure modulates heat shock protein expression, particularly HSP-70, in C. elegans. Furthermore, loss of hsp-70 increases protein oxidation and dopaminergic neuronal degeneration following manganese exposure, which is associated with the inhibition of pink1 increased expression, thus potentially exacerbating the vulnerability to this metal.}, language = {en} }