@article{WuAlluGarapatietal.2012, author = {Wu, Anhui and Allu, Annapurna Devi and Garapati, Prashanth and Siddiqui, Hamad and Dortay, Hakan and Zanor, Maria-Ines and Asensi-Fabado, Maria Amparo and Munne-Bosch, Sergi and Antonio, Carla and Tohge, Takayuki and Fernie, Alisdair R. and Kaufmann, Kerstin and Xue, Gang-Ping and M{\"u}ller-R{\"o}ber, Bernd and Balazadeh, Salma}, title = {Jungbrunnen1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in arabidopsis}, series = {The plant cell}, volume = {24}, journal = {The plant cell}, number = {2}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.111.090894}, pages = {482 -- 506}, year = {2012}, abstract = {The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H2O2)-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1 overexpression strongly delays senescence, dampens intracellular H2O2 levels, and enhances tolerance to various abiotic stresses, whereas in jub1-1 knockdown plants, precocious senescence and lowered abiotic stress tolerance are observed. A JUB1 binding site containing a RRYGCCGT core sequence is present in the promoter of DREB2A, which plays an important role in abiotic stress responses. JUB1 transactivates DREB2A expression in mesophyll cell protoplasts and transgenic plants and binds directly to the DREB2A promoter. Transcriptome profiling of JUB1 overexpressors revealed elevated expression of several reactive oxygen species-responsive genes, including heat shock protein and glutathione S-transferase genes, whose expression is further induced by H2O2 treatment. Metabolite profiling identified elevated Pro and trehalose levels in JUB1 overexpressors, in accordance with their enhanced abiotic stress tolerance. We suggest that JUB1 constitutes a central regulator of a finely tuned control system that modulates cellular H2O2 level and primes the plants for upcoming stress through a gene regulatory network that involves DREB2A.}, language = {en} } @article{GechevBeninaObataetal.2013, author = {Gechev, Tsanko S. and Benina, Maria and Obata, Toshihiro and Tohge, Takayuki and Neerakkal, Sujeeth and Minkov, Ivan and Hille, Jacques and Temanni, Mohamed-Ramzi and Marriott, Andrew S. and Bergstr{\"o}m, Ed and Thomas-Oates, Jane and Antonio, Carla and M{\"u}ller-R{\"o}ber, Bernd and Schippers, Jos H. M. and Fernie, Alisdair R. and Toneva, Valentina}, title = {Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis}, series = {Cellular and molecular life sciences}, volume = {70}, journal = {Cellular and molecular life sciences}, number = {4}, publisher = {Springer}, address = {Basel}, issn = {1420-682X}, doi = {10.1007/s00018-012-1155-6}, pages = {689 -- 709}, year = {2013}, abstract = {Haberlea rhodopensis is a resurrection plant with remarkable tolerance to desiccation. Haberlea exposed to drought stress, desiccation, and subsequent rehydration showed no signs of damage or severe oxidative stress compared to untreated control plants. Transcriptome analysis by next-generation sequencing revealed a drought-induced reprogramming, which redirected resources from growth towards cell protection. Repression of photosynthetic and growth-related genes during water deficiency was concomitant with induction of transcription factors (members of the NAC, NF-YA, MADS box, HSF, GRAS, and WRKY families) presumably acting as master switches of the genetic reprogramming, as well as with an upregulation of genes related to sugar metabolism, signaling, and genes encoding early light-inducible (ELIP), late embryogenesis abundant (LEA), and heat shock (HSP) proteins. At the same time, genes encoding other LEA, HSP, and stress protective proteins were constitutively expressed at high levels even in unstressed controls. Genes normally involved in tolerance to salinity, chilling, and pathogens were also highly induced, suggesting a possible cross-tolerance against a number of abiotic and biotic stress factors. A notable percentage of the genes highly regulated in dehydration and subsequent rehydration were novel, with no sequence homology to genes from other plant genomes. Additionally, an extensive antioxidant gene network was identified with several gene families possessing a greater number of antioxidant genes than most other species with sequenced genomes. Two of the transcripts most abundant during all conditions encoded catalases and five more catalases were induced in water-deficient samples. Using the pharmacological inhibitor 3-aminotriazole (AT) to compromise catalase activity resulted in increased sensitivity to desiccation. Metabolome analysis by GC or LC-MS revealed accumulation of sucrose, verbascose, spermidine, and gamma-aminobutyric acid during drought, as well as particular secondary metabolites accumulating during rehydration. This observation, together with the complex antioxidant system and the constitutive expression of stress protective genes suggests that both constitutive and inducible mechanisms contribute to the extreme desiccation tolerance of H. rhodopensis.}, language = {en} }