@misc{VolkertBeckCederholmetal.2019, author = {Volkert, Dorothee and Beck, Anne Marie and Cederholm, Tommy and Cereda, Emanuele and Cruz-Jentoft, Alfonso J. and Goisser, Sabine and de Groot, Lisette and Grosshauser, Franz and Kiesswetter, Eva and Norman, Kristina and Pourhassan, Maryam and Reinders, Ilse and Roberts, Helen C. and Rolland, Yves and Schneider, St{\´e}phane M. and Sieber, Cornel and Thiem, Ulrich and Visser, Marjolein and Wijnhoven, Hanneke and Wirth, Rainer}, title = {Management of malnutrition in older patients}, series = {Journal of Clinical Medicine : open access journal}, volume = {8}, journal = {Journal of Clinical Medicine : open access journal}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2077-0383}, doi = {10.3390/jcm8070974}, pages = {16}, year = {2019}, abstract = {Malnutrition is widespread in older people and represents a major geriatric syndrome with multifactorial etiology and severe consequences for health outcomes and quality of life. The aim of the present paper is to describe current approaches and evidence regarding malnutrition treatment and to highlight relevant knowledge gaps that need to be addressed. Recently published guidelines of the European Society for Clinical Nutrition and Metabolism (ESPEN) provide a summary of the available evidence and highlight the wide range of different measures that can be taken—from the identification and elimination of potential causes to enteral and parenteral nutrition—depending on the patient's abilities and needs. However, more than half of the recommendations therein are based on expert consensus because of a lack of evidence, and only three are concern patient-centred outcomes. Future research should further clarify the etiology of malnutrition and identify the most relevant causes in order to prevent malnutrition. Based on limited and partly conflicting evidence and the limitations of existing studies, it remains unclear which interventions are most effective in which patient groups, and if specific situations, diseases or etiologies of malnutrition require specific approaches. Patient-relevant outcomes such as functionality and quality of life need more attention, and research methodology should be harmonised to allow for the comparability of studies.}, language = {en} } @article{SeitzSchumacherBakeretal.2019, author = {Seitz, Aaron P. and Schumacher, Fabian and Baker, Jennifer and Soddemann, Matthias and Wilker, Barbara and Caldwell, Charles C. and Gobble, Ryan M. and Kamler, Markus and Becker, Katrin Anne and Beck, Sascha and Kleuser, Burkhard and Edwards, Michael J. and Gulbins, Erich}, title = {Sphingosine-coating of plastic surfaces prevents ventilator-associated pneumonia}, series = {Journal of molecular medicine}, volume = {97}, journal = {Journal of molecular medicine}, number = {8}, publisher = {Springer}, address = {Heidelberg}, issn = {0946-2716}, doi = {10.1007/s00109-019-01800-1}, pages = {1195 -- 1211}, year = {2019}, abstract = {Ventilator-associated pneumonia (VAP) is a major cause of morbidity and mortality in critically ill patients. Here, we employed the broad antibacterial effects of sphingosine to prevent VAP by developing a novel method of coating surfaces of endotracheal tubes with sphingosine and sphingosine analogs. Sphingosine and phytosphingosine coatings of endotracheal tubes prevent adherence and mediate killing of Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus, even in biofilms. Most importantly, sphingosine-coating of endotracheal tubes also prevented P. aeruginosa and S. aureus pneumonia in vivo. Coating of the tubes with sphingosine was stable, without obvious side effects on tracheal epithelial cells and did not induce inflammation. In summary, we describe a novel method to coat plastic surfaces and provide evidence for the application of sphingosine and phytosphingosine as novel antimicrobial coatings to prevent bacterial adherence and induce killing of pathogens on the surface of endotracheal tubes with potential to prevent biofilm formation and VAP.Key messagesNovel dip-coating method to coat plastic surfaces with lipids.Sphingosine and phytosphingosine as novel antimicrobial coatings on plastic surface.Sphingosine coatings of endotracheal tubes prevent bacterial adherence and biofilms.Sphingosine coatings of endotracheal tubes induce killing of pathogens.Sphingosine coatings of endotracheal tubes ventilator-associated pneumonia.}, language = {en} }