@article{KnoxBrownRindfleischGuentheretal.2020, author = {Knox-Brown, Patrick and Rindfleisch, Tobias and G{\"u}nther, Anne and Balow, Kim and Bremer, Anne and Walther, Dirk and Miettinen, Markus S. and Hincha, Dirk K. and Thalhammer, Anja}, title = {Similar Yet Different}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {8}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms21082794}, pages = {25}, year = {2020}, abstract = {The importance of intrinsically disordered late embryogenesis abundant (LEA) proteins in the tolerance to abiotic stresses involving cellular dehydration is undisputed. While structural transitions of LEA proteins in response to changes in water availability are commonly observed and several molecular functions have been suggested, a systematic, comprehensive and comparative study of possible underlying sequence-structure-function relationships is still lacking. We performed molecular dynamics (MD) simulations as well as spectroscopic and light scattering experiments to characterize six members of two distinct, lowly homologous clades of LEA_4 family proteins from Arabidopsis thaliana. We compared structural and functional characteristics to elucidate to what degree structure and function are encoded in LEA protein sequences and complemented these findings with physicochemical properties identified in a systematic bioinformatics study of the entire Arabidopsis thaliana LEA_4 family. Our results demonstrate that although the six experimentally characterized LEA_4 proteins have similar structural and functional characteristics, differences concerning their folding propensity and membrane stabilization capacity during a freeze/thaw cycle are obvious. These differences cannot be easily attributed to sequence conservation, simple physicochemical characteristics or the abundance of sequence motifs. Moreover, the folding propensity does not appear to be correlated with membrane stabilization capacity. Therefore, the refinement of LEA_4 structural and functional properties is likely encoded in specific patterns of their physicochemical characteristics.}, language = {en} } @phdthesis{Guenther2006, author = {G{\"u}nther, Anja M.}, title = {Mikrokapseln aus biokompatiblen Polyelektrolyt-Multischichten als DNA- und Protein-Vehikel}, address = {Potsdam}, pages = {112 S. : graph. Darst.}, year = {2006}, language = {de} } @misc{KnoxBrownRindfleischGuentheretal.2020, author = {Knox-Brown, Patrick and Rindfleisch, Tobias and G{\"u}nther, Anne and Balow, Kim and Bremer, Anne and Walther, Dirk and Miettinen, Markus S. and Hincha, Dirk K. and Thalhammer, Anja}, title = {Similar Yet Different}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {901}, issn = {1866-8372}, doi = {10.25932/publishup-46941}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469419}, pages = {27}, year = {2020}, abstract = {The importance of intrinsically disordered late embryogenesis abundant (LEA) proteins in the tolerance to abiotic stresses involving cellular dehydration is undisputed. While structural transitions of LEA proteins in response to changes in water availability are commonly observed and several molecular functions have been suggested, a systematic, comprehensive and comparative study of possible underlying sequence-structure-function relationships is still lacking. We performed molecular dynamics (MD) simulations as well as spectroscopic and light scattering experiments to characterize six members of two distinct, lowly homologous clades of LEA_4 family proteins from Arabidopsis thaliana. We compared structural and functional characteristics to elucidate to what degree structure and function are encoded in LEA protein sequences and complemented these findings with physicochemical properties identified in a systematic bioinformatics study of the entire Arabidopsis thaliana LEA_4 family. Our results demonstrate that although the six experimentally characterized LEA_4 proteins have similar structural and functional characteristics, differences concerning their folding propensity and membrane stabilization capacity during a freeze/thaw cycle are obvious. These differences cannot be easily attributed to sequence conservation, simple physicochemical characteristics or the abundance of sequence motifs. Moreover, the folding propensity does not appear to be correlated with membrane stabilization capacity. Therefore, the refinement of LEA_4 structural and functional properties is likely encoded in specific patterns of their physicochemical characteristics.}, language = {en} } @article{MazzaGuenther2021, author = {Mazza, Valeria and G{\"u}nther, Anja}, title = {City mice and country mice}, series = {Animal behaviour}, volume = {172}, journal = {Animal behaviour}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0003-3472}, doi = {10.1016/j.anbehav.2020.12.007}, pages = {197 -- 210}, year = {2021}, abstract = {The ability to produce innovative behaviour is a key determinant in the successful coping with environmental challenges and changes. The expansion of human-altered environments presents wildlife with multiple novel situations in which innovativeness could be beneficial. A better understanding of the drivers of within-species variation in innovation propensity and its consequences will provide insights into the traits enabling animals to thrive in the face of human-induced rapid environmental change. We compared problem-solving performance of 31 striped field mice, Apodemus agrarius, originating from rural or urban environments in a battery of eight foraging extraction tasks. We tested whether differences in problem-solving performance were mediated by the extent and duration of the animal's exploration of the experimental set-ups, the time required to solve the tasks, and their persistence. In addition, we tested the influence of the diversity of motor responses, as well as of behavioural traits boldness and activity on problem-solving performance. Urban individuals were better problem solvers despite rural individuals approaching faster and interacting longer with the test set-ups. Participation rates and time required to solve a task did not differ between rural and urban individuals. However, in case of failure to solve a task, rural mice were more persistent. The best predictors of solving success, aside from the area of origin, were the time spent exploring the set-ups and boldness, while activity and diversity of motor responses did not explain it. Problem-solving ability could thus be a contributing factor to the successful coping with the rapid and recent expansion of human-altered environments.}, language = {en} }