@misc{GarbusowSommerNebeetal.2018, author = {Garbusow, Maria and Sommer, Christian and Nebe, Stephan and Sebold, Miriam Hannah and Kuitunen-Paul, S{\"o}ren and Wittchen, Hans-Ulrich and Smolka, Michael N. and Zimmermann, Ulrich S. and Rapp, Michael Armin and Huys, Quentin J. M. and Schlagenhauf, Florian and Heinz, Andreas}, title = {Multi-level evidence of general pavlovian-to-instrumental transfer in alcohol use disorder}, series = {Alcoholism : clinical and experimental research ; the official journal of the American Medical Society on Alcoholism and the Research Society on Alcoholism}, volume = {42}, journal = {Alcoholism : clinical and experimental research ; the official journal of the American Medical Society on Alcoholism and the Research Society on Alcoholism}, publisher = {Wiley}, address = {Hoboken}, issn = {0145-6008}, pages = {128A -- 128A}, year = {2018}, language = {en} } @article{SekutowiczGuggenmosKuitunenPauletal.2019, author = {Sekutowicz, Maria and Guggenmos, Matthias and Kuitunen-Paul, S{\"o}ren and Garbusow, Maria and Sebold, Miriam Hannah and Pelz, Patricia and Priller, Josef and Wittchen, Hans-Ulrich and Smolka, Michael N. and Zimmermann, Ulrich S. and Heinz, Andreas and Sterzer, Philipp and Schmack, Katharina}, title = {Neural Response Patterns During Pavlovian-to-Instrumental Transfer Predict Alcohol Relapse and Young Adult Drinking}, series = {Biological psychiatry : a journal of psychiatric neuroscience and therapeutics ; a publication of the Society of Biological Psychiatry}, volume = {86}, journal = {Biological psychiatry : a journal of psychiatric neuroscience and therapeutics ; a publication of the Society of Biological Psychiatry}, number = {11}, publisher = {Elsevier}, address = {New York}, issn = {0006-3223}, doi = {10.1016/j.biopsych.2019.06.028}, pages = {857 -- 863}, year = {2019}, abstract = {BACKGROUND: Pavlovian-to-instrumental transfer (PIT) describes the influence of conditioned stimuli on instrumental behaviors and is discussed as a key process underlying substance abuse. Here, we tested whether neural responses during alcohol-related PIT predict future relapse in alcohol-dependent patients and future drinking behavior in adolescents. METHODS: Recently detoxified alcohol-dependent patients (n = 52) and young adults without dependence (n = 136) underwent functional magnetic resonance imaging during an alcohol-related PIT paradigm, and their drinking behavior was assessed in a 12-month follow-up. To predict future drinking behavior from PIT activation patterns, we used a multivoxel classification scheme based on linear support vector machines. RESULTS: When training and testing the classification scheme in patients, PIT activation patterns predicted future relapse with 71.2\% accuracy. Feature selection revealed that classification was exclusively based on activation patterns in medial prefrontal cortex. To probe the generalizability of this functional magnetic resonance imaging-based prediction of future drinking behavior, we applied the support vector machine classifier that had been trained on patients to PIT functional magnetic resonance imaging data from adolescents. An analysis of cross-classification predictions revealed that those young social drinkers who were classified as abstainers showed a greater reduction in alcohol consumption at 12-month follow-up than those classified as relapsers (Delta = -24.4 +/- 6.0 g vs. -5.7 +/- 3.6 g; p = .019). CONCLUSIONS: These results suggest that neural responses during PIT could constitute a generalized prognostic marker for future drinking behavior in established alcohol use disorder and in at-risk states.}, language = {en} } @article{WangRazzaqRudolphetal.2018, author = {Wang, Li and Razzaq, Muhammad Yasar and Rudolph, Tobias and Heuchel, Matthias and N{\"o}chel, Ulrich and Mansfeld, Ulrich and Jiang, Yi and Gould, Oliver E. C. and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Reprogrammable, magnetically controlled polymeric nanocomposite actuators}, series = {Material horizons}, volume = {5}, journal = {Material horizons}, number = {5}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2051-6347}, doi = {10.1039/c8mh00266e}, pages = {861 -- 867}, year = {2018}, abstract = {Soft robots and devices with the advanced capability to perform adaptive motions similar to that of human beings often have stimuli-sensitive polymeric materials as the key actuating component. The external signals triggering the smart polymers' actuations can be transmitted either via a direct physical connection between actuator and controlling unit (tethered) or remotely without a connecting wire. However, the vast majority of such polymeric actuator materials are limited to one specific type of motion as their geometrical information is chemically fixed. Here, we present magnetically driven nanocomposite actuators, which can be reversibly reprogrammed to different actuation geometries by a solely physical procedure. Our approach is based on nanocomposite materials comprising spatially segregated crystallizable actuation and geometry determining units. Upon exposure to a specific magnetic field strength the actuators' geometric memory is erased by the melting of the geometry determining units allowing the implementation of a new actuator shape. The actuation performance of the nanocomposites can be tuned and the technical significance was demonstrated in a multi-cyclic experiment with several hundreds of repetitive free-standing shape shifts without losing performance.}, language = {en} } @article{SchadGarbusowFriedeletal.2018, author = {Schad, Daniel and Garbusow, Maria and Friedel, Eva and Sommer, Christian and Sebold, Miriam Hannah and H{\"a}gele, Claudia and Bernhardt, Nadine and Nebe, Stephan and Kuitunen-Paul, S{\"o}ren and Liu, Shuyan and Eichmann, Uta and Beck, Anne and Wittchen, Hans-Ulrich and Walter, Henrik and Sterzer, Philipp and Zimmermann, Ulrich S. and Smolka, Michael N. and Schlagenhauf, Florian and Huys, Quentin J. M. and Heinz, Andreas and Rapp, Michael Armin}, title = {Neural correlates of instrumental responding in the context of alcohol-related cues index disorder severity and relapse risk}, series = {European archives of psychiatry and clinical neuroscience : official organ of the German Society for Biological Psychiatry}, volume = {269}, journal = {European archives of psychiatry and clinical neuroscience : official organ of the German Society for Biological Psychiatry}, number = {3}, publisher = {Springer}, address = {Heidelberg}, issn = {0940-1334}, doi = {10.1007/s00406-017-0860-4}, pages = {295 -- 308}, year = {2018}, abstract = {The influence of Pavlovian conditioned stimuli on ongoing behavior may contribute to explaining how alcohol cues stimulate drug seeking and intake. Using a Pavlovian-instrumental transfer task, we investigated the effects of alcohol-related cues on approach behavior (i.e., instrumental response behavior) and its neural correlates, and related both to the relapse after detoxification in alcohol-dependent patients. Thirty-one recently detoxified alcohol-dependent patients and 24 healthy controls underwent instrumental training, where approach or non-approach towards initially neutral stimuli was reinforced by monetary incentives. Approach behavior was tested during extinction with either alcohol-related or neutral stimuli (as Pavlovian cues) presented in the background during functional magnetic resonance imaging (fMRI). Patients were subsequently followed up for 6 months. We observed that alcohol-related background stimuli inhibited the approach behavior in detoxified alcohol-dependent patients (t = -3.86, p < .001), but not in healthy controls (t = -0.92, p = .36). This behavioral inhibition was associated with neural activation in the nucleus accumbens (NAcc) (t((30)) = 2.06, p < .05). Interestingly, both the effects were only present in subsequent abstainers, but not relapsers and in those with mild but not severe dependence. Our data show that alcohol-related cues can acquire inhibitory behavioral features typical of aversive stimuli despite being accompanied by a stronger NAcc activation, suggesting salience attribution. The fact that these findings are restricted to abstinence and milder illness suggests that they may be potential resilience factors.}, language = {en} } @article{GarbusowSchadSeboldetal.2016, author = {Garbusow, Maria and Schad, Daniel and Sebold, Miriam Hannah and Friedel, Eva and Bernhardt, Nadine and Koch, Stefan P. and Steinacher, Bruno and Kathmann, Norbert and Geurts, Dirk E. M. and Sommer, Christian and Mueller, Dirk K. and Nebe, Stephan and Paul, Soeren and Wittchen, Hans-Ulrich and Zimmermann, Ulrich S. and Walter, Henrik and Smolka, Michael N. and Sterzer, Philipp and Rapp, Michael Armin and Huys, Quentin J. M. and Schlagenhauf, Florian and Heinz, Andreas}, title = {Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence}, series = {Addiction biology}, volume = {21}, journal = {Addiction biology}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1355-6215}, doi = {10.1111/adb.12243}, pages = {719 -- 731}, year = {2016}, abstract = {In detoxified alcohol-dependent patients, alcohol-related stimuli can promote relapse. However, to date, the mechanisms by which contextual stimuli promote relapse have not been elucidated in detail. One hypothesis is that such contextual stimuli directly stimulate the motivation to drink via associated brain regions like the ventral striatum and thus promote alcohol seeking, intake and relapse. Pavlovian-to-Instrumental-Transfer (PIT) may be one of those behavioral phenomena contributing to relapse, capturing how Pavlovian conditioned (contextual) cues determine instrumental behavior (e.g. alcohol seeking and intake). We used a PIT paradigm during functional magnetic resonance imaging to examine the effects of classically conditioned Pavlovian stimuli on instrumental choices in n=31 detoxified patients diagnosed with alcohol dependence and n=24 healthy controls matched for age and gender. Patients were followed up over a period of 3 months. We observed that (1) there was a significant behavioral PIT effect for all participants, which was significantly more pronounced in alcohol-dependent patients; (2) PIT was significantly associated with blood oxygen level-dependent (BOLD) signals in the nucleus accumbens (NAcc) in subsequent relapsers only; and (3) PIT-related NAcc activation was associated with, and predictive of, critical outcomes (amount of alcohol intake and relapse during a 3 months follow-up period) in alcohol-dependent patients. These observations show for the first time that PIT-related BOLD signals, as a measure of the influence of Pavlovian cues on instrumental behavior, predict alcohol intake and relapse in alcohol dependence.}, language = {en} } @misc{deVeraAlawiBackhausetal.2019, author = {de Vera, Jean-Pierre Paul and Alawi, Mashal and Backhaus, Theresa and Baque, Mickael and Billi, Daniela and Boettger, Ute and Berger, Thomas and Bohmeier, Maria and Cockell, Charles and Demets, Rene and de la Torre Noetzel, Rosa and Edwards, Howell and Elsaesser, Andreas and Fagliarone, Claudia and Fiedler, Annelie and Foing, Bernard and Foucher, Frederic and Fritz, J{\"o}rg and Hanke, Franziska and Herzog, Thomas and Horneck, Gerda and H{\"u}bers, Heinz-Wilhelm and Huwe, Bj{\"o}rn and Joshi, Jasmin Radha and Kozyrovska, Natalia and Kruchten, Martha and Lasch, Peter and Lee, Natuschka and Leuko, Stefan and Leya, Thomas and Lorek, Andreas and Martinez-Frias, Jesus and Meessen, Joachim and Moritz, Sophie and Moeller, Ralf and Olsson-Francis, Karen and Onofri, Silvano and Ott, Sieglinde and Pacelli, Claudia and Podolich, Olga and Rabbow, Elke and Reitz, G{\"u}nther and Rettberg, Petra and Reva, Oleg and Rothschild, Lynn and Garcia Sancho, Leo and Schulze-Makuch, Dirk and Selbmann, Laura and Serrano, Paloma and Szewzyk, Ulrich and Verseux, Cyprien and Wadsworth, Jennifer and Wagner, Dirk and Westall, Frances and Wolter, David and Zucconi, Laura}, title = {Limits of life and the habitability of Mars}, series = {Astrobiology}, volume = {19}, journal = {Astrobiology}, number = {2}, publisher = {Liebert}, address = {New Rochelle}, issn = {1531-1074}, doi = {10.1089/ast.2018.1897}, pages = {145 -- 157}, year = {2019}, abstract = {BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports-among others-the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit.}, language = {en} } @article{HaegeleSchlagenhaufRappetal.2015, author = {Haegele, Claudia and Schlagenhauf, Florian and Rapp, Michael Armin and Sterzer, Philipp and Beck, Anne and Bermpohl, Felix and Stoy, Meline and Stroehle, Andreas and Wittchen, Hans-Ulrich and Dolan, Raymond J. and Heinz, Andreas}, title = {Dimensional psychiatry: reward dysfunction and depressive mood across psychiatric disorders}, series = {Psychopharmacology}, volume = {232}, journal = {Psychopharmacology}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0033-3158}, doi = {10.1007/s00213-014-3662-7}, pages = {331 -- 341}, year = {2015}, abstract = {A dimensional approach in psychiatry aims to identify core mechanisms of mental disorders across nosological boundaries. We compared anticipation of reward between major psychiatric disorders, and investigated whether reward anticipation is impaired in several mental disorders and whether there is a common psychopathological correlate (negative mood) of such an impairment. During reward anticipation, we observed significant group differences in ventral striatal (VS) activation: patients with schizophrenia, alcohol dependence, and major depression showed significantly less ventral striatal activation compared to healthy controls. Depressive symptoms correlated with dysfunction in reward anticipation regardless of diagnostic entity. There was no significant correlation between anxiety symptoms and VS functional activation. Our findings demonstrate a neurobiological dysfunction related to reward prediction that transcended disorder categories and was related to measures of depressed mood. The findings underline the potential of a dimensional approach in psychiatry and strengthen the hypothesis that neurobiological research in psychiatric disorders can be targeted at core mechanisms that are likely to be implicated in a range of clinical entities.}, language = {en} } @article{NikolisMischokSiegmundetal.2019, author = {Nikolis, Vasileios C. and Mischok, Andreas and Siegmund, Bernhard and Kublitski, Jonas and Jia, Xiangkun and Benduhn, Johannes and H{\"o}rmann, Ulrich and Neher, Dieter and Gather, Malte C. and Spoltore, Donato and Vandewal, Koen}, title = {Strong light-matter coupling for reduced photon energy losses in organic photovoltaics}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-11717-5}, pages = {8}, year = {2019}, abstract = {Strong light-matter coupling can re-arrange the exciton energies in organic semiconductors. Here, we exploit strong coupling by embedding a fullerene-free organic solar cell (OSC) photo-active layer into an optical microcavity, leading to the formation of polariton peaks and a red-shift of the optical gap. At the same time, the open-circuit voltage of the device remains unaffected. This leads to reduced photon energy losses for the low-energy polaritons and a steepening of the absorption edge. While strong coupling reduces the optical gap, the energy of the charge-transfer state is not affected for large driving force donor-acceptor systems. Interestingly, this implies that strong coupling can be exploited in OSCs to reduce the driving force for electron transfer, without chemical or microstructural modifications of the photoactive layer. Our work demonstrates that the processes determining voltage losses in OSCs can now be tuned, and reduced to unprecedented values, simply by manipulating the device architecture.}, language = {en} } @article{BhatMilicicThieulinPardoetal.2017, author = {Bhat, Javaid Y. and Milicic, Goran and Thieulin-Pardo, Gabriel and Bracher, Andreas and Maxwell, Andrew and Ciniawsky, Susanne and M{\"u}ller-Cajar, Oliver and Engen, John R. and Hartl, F. Ulrich and Wendler, Petra and Hayer-Hartl, Manajit}, title = {Mechanism of Enzyme Repair by the AAA(+) Chaperone Rubisco Activase}, series = {Molecular cell}, volume = {67}, journal = {Molecular cell}, publisher = {Cell Press}, address = {Cambridge}, issn = {1097-2765}, doi = {10.1016/j.molcel.2017.07.004}, pages = {744 -- 756}, year = {2017}, abstract = {How AAA(+) chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA(+) protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair.}, language = {en} } @article{HohmannFehrKirstenetal.2008, author = {Hohmann, Andreas and Fehr, Ulrich and Kirsten, Robert and Kr{\"u}ger, Tom}, title = {Biomechanical analysis of the backstroke start technique in swimming}, issn = {1612-5770}, year = {2008}, language = {en} }