@article{LoebbickeChananaSchlaadetal.2011, author = {L{\"o}bbicke, Ruben and Chanana, Munish and Schlaad, Helmut and Pilz-Allen, Christine and G{\"u}nter, Christina and M{\"o}hwald, Helmuth and Taubert, Andreas}, title = {Polymer Brush Controlled Bioinspired Calcium Phosphate Mineralization and Bone Cell Growth}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {12}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/bm200991b}, pages = {3753 -- 3760}, year = {2011}, abstract = {Polymer brushes on thiol-modified gold surfaces were synthesized by using terminal thiol groups for the surface initiated free radical polymerization of methacrylic acid and dimethylaminotheyl methacrylate, respectively. Atomic force microscopy shows that the resulting poly(methacrylic acid (PMAA) and poly(dimethylaminothyl methacrylate) (PDM- AEMA) brushes are homogeneous. Contact angle measurements show that the brushes are pH responsive and can reversibly be protonated and deprotonated. Mineralization of the brushes with calcium phosphate at different pH yields homogeneously mineralized surfaces, and preosteoblastic cells proliferate-on be number of living cells on the mineralized hybrid surface is ca. 3 times (P corresponding nonmineralized brushes.}, language = {en} }