@article{AbouserieZehbeMetzneretal.2017, author = {Abouserie, Ahed and Zehbe, Kerstin and Metzner, Philipp and Kelling, Alexandra and G{\"u}nter, Christina and Schilde, Uwe and Strauch, Peter and K{\"o}rzd{\"o}rfer, Thomas and Taubert, Andreas}, title = {Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201700826}, pages = {5640 -- 5649}, year = {2017}, abstract = {Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry.}, language = {en} } @article{AbouserieZehbeMetzneretal.2017, author = {Abouserie, Ahed and Zehbe, Kerstin and Metzner, Philipp and Kelling, Alexandra and G{\"u}nter, Christina and Schilde, Uwe and Strauch, Peter and K{\"o}rzd{\"o}rfer, Thomas and Taubert, Andreas}, title = {Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201700826}, pages = {5640 -- 5649}, year = {2017}, abstract = {Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry.}, language = {en} } @article{BalischewskiBehrensZehbeetal.2020, author = {Balischewski, Christian and Behrens, Karsten and Zehbe, Kerstin and G{\"u}nter, Christina and Mies, Stefan and Sperlich, Eric and Kelling, Alexandra and Taubert, Andreas}, title = {Ionic liquids with more than one metal}, series = {Chemistry - a European journal}, volume = {26}, journal = {Chemistry - a European journal}, number = {72}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.202003097}, pages = {17504 -- 17513}, year = {2020}, abstract = {Thirteen N-butylpyridinium salts, including three monometallic [C4Py](2)[MCl4], nine bimetallic [C4Py](2)[(M1-xMxCl4)-M-a-Cl-b] and one trimetallic compound [C4Py](2)[(M1-y-zMyMz (c) Cl4)-M-a-M-b] (M=Co, Cu, Mn; x=0.25, 0.50 or 0.75 and y=z=0.33), were synthesized and their structure and thermal and electrochemical properties were studied. All compounds are ionic liquids (ILs) with melting points between 69 and 93 degrees C. X-ray diffraction proves that all ILs are isostructural. The conductivity at room temperature is between 10(-4) and 10(-8) S cm(-1). Some Cu-based ILs reach conductivities of 10(-2) S cm(-1), which is, however, probably due to IL dec. This correlates with the optical bandgap measurements indicating the formation of large bandgap semiconductors. At elevated temperatures approaching the melting points, the conductivities reach up to 1.47x10(-1) S cm(-1) at 70 degrees C. The electrochemical stability windows of the ILs are between 2.5 and 3.0 V.}, language = {en} } @article{BalischewskiBhattacharyyaSperlichetal.2022, author = {Balischewski, Christian and Bhattacharyya, Biswajit and Sperlich, Eric and G{\"u}nter, Christina and Beqiraj, Alkit and Klamroth, Tillmann and Behrens, Karsten and Mies, Stefan and Kelling, Alexandra and Lubahn, Susanne and Holtzheimer, Lea and Nitschke, Anne and Taubert, Andreas}, title = {Tetrahalidometallate(II) ionic liquids with more than one metal}, series = {Chemistry - a European journal}, volume = {28}, journal = {Chemistry - a European journal}, number = {64}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-3765}, doi = {10.1002/chem.202201068}, pages = {13}, year = {2022}, abstract = {Fifteen N-butylpyridinium salts - five monometallic [C4Py](2)[MBr4] and ten bimetallic [C4Py](2)[(M0.5M0.5Br4)-M-a-Br-b] (M=Co, Cu, Mn, Ni, Zn) - were synthesized, and their structures and thermal and electrochemical properties were studied. All the compounds are ionic liquids (ILs) with melting points between 64 and 101 degrees C. Powder and single-crystal X-ray diffraction show that all ILs are isostructural. The electrochemical stability windows of the ILs are between 2 and 3 V. The conductivities at room temperature are between 10(-5) and 10(-6) S cm(-1). At elevated temperatures, the conductivities reach up to 10(-4) S cm(-1) at 70 degrees C. The structures and properties of the current bromide-based ILs were also compared with those of previous examples using chloride ligands, which illustrated differences and similarities between the two groups of ILs.}, language = {en} } @misc{BehrensBalischewskiSperlichetal.2022, author = {Behrens, Karsten and Balischewski, Christian and Sperlich, Eric and Menski, Antonia Isabell and Balderas-Valadez, Ruth Fabiola and Pacholski, Claudia and G{\"u}nter, Christina and Lubahn, Susanne and Kelling, Alexandra and Taubert, Andreas}, title = {Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1316}, issn = {1866-8372}, doi = {10.25932/publishup-58751}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587512}, pages = {35072 -- 35082}, year = {2022}, abstract = {Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup.}, language = {en} } @article{BehrensBalischewskiSperlichetal.2022, author = {Behrens, Karsten and Balischewski, Christian and Sperlich, Eric and Menski, Antonia Isabell and Balderas-Valadez, Ruth Fabiola and Pacholski, Claudia and G{\"u}nter, Christina and Lubahn, Susanne and Kelling, Alexandra and Taubert, Andreas}, title = {Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors}, series = {RSC Advances}, volume = {12}, journal = {RSC Advances}, publisher = {RSC}, address = {London}, issn = {2046-2069}, doi = {10.1039/d2ra05581c}, pages = {35072 -- 35082}, year = {2022}, abstract = {Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup.}, language = {en} } @misc{BhattacharyyaBalischewskiSperlichetal.2023, author = {Bhattacharyya, Biswajit and Balischewski, Christian and Sperlich, Eric and G{\"u}nter, Christina and Mies, Stefan and Kelling, Alexandra and Taubert, Andreas}, title = {N-Butyl Pyridinium Diiodido Argentate(I)}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1341}, issn = {1866-8372}, doi = {10.25932/publishup-60487}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-604874}, pages = {7}, year = {2023}, abstract = {A new solid-state material, N-butyl pyridinium diiodido argentate(I), is synthesized using a simple and effective one-pot approach. In the solid state, the compound exhibits 1D ([AgI2](-))(n) chains that are stabilized by the N-butyl pyridinium cation. The 1D structure is further manifested by the formation of long, needle-like crystals, as revealed from electron microscopy. As the general composition is derived from metal halide-based ionic liquids, the compound has a low melting point of 100-101 degrees C, as confirmed by differential scanning calorimetry. Most importantly, the compound has a conductivity of 10(-6) S cm(-1) at room temperature. At higher temperatures the conductivity increases and reaches to 10(-4 )S cm(-1) at 70 degrees C. In contrast to AgI, however, the current material has a highly anisotropic 1D arrangement of the ionic domains. This provides direct and tuneable access to fast and anisotropic ionic conduction. The material is thus a significant step forward beyond current ion conductors and a highly promising prototype for the rational design of highly conductive ionic solid-state conductors for battery or solar cell applications.}, language = {en} } @article{BhattacharyyaBalischewskiSperlichetal.2023, author = {Bhattacharyya, Biswajit and Balischewski, Christian and Sperlich, Eric and G{\"u}nter, Christina and Mies, Stefan and Kelling, Alexandra and Taubert, Andreas}, title = {N-Butyl Pyridinium Diiodido Argentate(I)}, series = {Advanced materials interfaces}, volume = {10}, journal = {Advanced materials interfaces}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.202202363}, pages = {7}, year = {2023}, abstract = {A new solid-state material, N-butyl pyridinium diiodido argentate(I), is synthesized using a simple and effective one-pot approach. In the solid state, the compound exhibits 1D ([AgI2](-))(n) chains that are stabilized by the N-butyl pyridinium cation. The 1D structure is further manifested by the formation of long, needle-like crystals, as revealed from electron microscopy. As the general composition is derived from metal halide-based ionic liquids, the compound has a low melting point of 100-101 degrees C, as confirmed by differential scanning calorimetry. Most importantly, the compound has a conductivity of 10(-6) S cm(-1) at room temperature. At higher temperatures the conductivity increases and reaches to 10(-4 )S cm(-1) at 70 degrees C. In contrast to AgI, however, the current material has a highly anisotropic 1D arrangement of the ionic domains. This provides direct and tuneable access to fast and anisotropic ionic conduction. The material is thus a significant step forward beyond current ion conductors and a highly promising prototype for the rational design of highly conductive ionic solid-state conductors for battery or solar cell applications.}, language = {en} } @misc{BlockGuenterRodriguesetal.2021, author = {Block, Inga and G{\"u}nter, Christina and Rodrigues, Alysson Duarte and Paasch, Silvia and Hesemann, Peter and Taubert, Andreas}, title = {Carbon Adsorbents from Spent Coffee for Removal of Methylene Blue and Methyl Orange from Water}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {14}, issn = {1866-8372}, doi = {10.25932/publishup-52165}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-521653}, pages = {20}, year = {2021}, abstract = {Activated carbons (ACs) were prepared from dried spent coffee (SCD), a biological waste product, to produce adsorbents for methylene blue (MB) and methyl orange (MO) from aqueous solution. Pre-pyrolysis activation of SCD was achieved via treatment of the SCD with aqueous sodium hydroxide solutions at 90 °C. Pyrolysis of the pretreated SCD at 500 °C for 1 h produced powders with typical characteristics of AC suitable and effective for dye adsorption. As an alternative to the rather harsh base treatment, calcium carbonate powder, a very common and abundant resource, was also studied as an activator. Mixtures of SCD and CaCO3 (1:1 w/w) yielded effective ACs for MO and MB removal upon pyrolysis needing only small amounts of AC to clear the solutions. A selectivity of the adsorption process toward anionic (MO) or cationic (MB) dyes was not observed.}, language = {en} } @article{BlockGuenterRodriguesetal.2021, author = {Block, Inga and G{\"u}nter, Christina and Rodrigues, Alysson Duarte and Paasch, Silvia and Hesemann, Peter and Taubert, Andreas}, title = {Carbon Adsorbents from Spent Coffee for Removal of Methylene Blue and Methyl Orange from Water}, series = {Materials}, volume = {14}, journal = {Materials}, number = {14}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma14143996}, pages = {18}, year = {2021}, abstract = {Activated carbons (ACs) were prepared from dried spent coffee (SCD), a biological waste product, to produce adsorbents for methylene blue (MB) and methyl orange (MO) from aqueous solution. Pre-pyrolysis activation of SCD was achieved via treatment of the SCD with aqueous sodium hydroxide solutions at 90 °C. Pyrolysis of the pretreated SCD at 500 °C for 1 h produced powders with typical characteristics of AC suitable and effective for dye adsorption. As an alternative to the rather harsh base treatment, calcium carbonate powder, a very common and abundant resource, was also studied as an activator. Mixtures of SCD and CaCO3 (1:1 w/w) yielded effective ACs for MO and MB removal upon pyrolysis needing only small amounts of AC to clear the solutions. A selectivity of the adsorption process toward anionic (MO) or cationic (MB) dyes was not observed.}, language = {en} }