@article{XieXuGessneretal.2012, author = {Xie, Zai-Lai and Xu, Hai-Bing and Gessner, Andre and Kumke, Michael Uwe and Priebe, Magdalena and Fromm, Katharina M. and Taubert, Andreas}, title = {A transparent, flexible, ion conductive, and luminescent PMMA ionogel based on a Pt/Eu bimetallic complex and the ionic liquid [Bmim][N(Tf)(2)]}, series = {Journal of materials chemistry}, volume = {22}, journal = {Journal of materials chemistry}, number = {16}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0959-9428}, doi = {10.1039/c2jm15862k}, pages = {8110 -- 8116}, year = {2012}, abstract = {Transparent, ion-conducting, luminescent, and flexible ionogels based on the room temperature ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl) imide [Bmim][N(Tf)(2)], a PtEu2 chromophore, and poly(methylmethacrylate) (PMMA) have been prepared. The thermal stability of the PMMA significantly increases with IL incorporation. In particular, the onset weight loss observed at ca. 229 degrees C for pure PMMA increases to 305 degrees C with IL addition. The ionogel has a high ionic conductivity of 10(-3) S cm(-1) at 373 K and exhibits a strong emission in the red with a long average luminescence decay time of tau = 890 mu s. The resulting material is a new type of soft hybrid material featuring useful thermal, optical, and ion transport properties.}, language = {en} }