@article{HohmannDiercksLuehnenschlossetal.1999, author = {Hohmann, Andreas and Diercks, B. and L{\"u}hnenschloß, D. and Seidel, Ilka and Wichmann, E.}, title = {Zur Struktur der Sprintleistung im Kraulschwimmen}, isbn = {3-932738-09-8}, year = {1999}, language = {de} } @article{Hohmann1999, author = {Hohmann, Andreas}, title = {Wettkampfdiagnostik}, isbn = {3-89124-541-6}, year = {1999}, language = {de} } @article{HeinrichBalanzateguiBensetal.2018, author = {Heinrich, Ingo and Balanzategui, Daniel and Bens, Oliver and Blasch, Gerald and Blume, Theresa and Boettcher, Falk and Borg, Erik and Brademann, Brian and Brauer, Achim and Conrad, Christopher and Dietze, Elisabeth and Dr{\"a}ger, Nadine and Fiener, Peter and Gerke, Horst H. and G{\"u}ntner, Andreas and Heine, Iris and Helle, Gerhard and Herbrich, Marcus and Harfenmeister, Katharina and Heussner, Karl-Uwe and Hohmann, Christian and Itzerott, Sibylle and Jurasinski, Gerald and Kaiser, Knut and Kappler, Christoph and Koebsch, Franziska and Liebner, Susanne and Lischeid, Gunnar and Merz, Bruno and Missling, Klaus Dieter and Morgner, Markus and Pinkerneil, Sylvia and Plessen, Birgit and Raab, Thomas and Ruhtz, Thomas and Sachs, Torsten and Sommer, Michael and Spengler, Daniel and Stender, Vivien and St{\"u}ve, Peter and Wilken, Florian}, title = {Interdisciplinary Geo-ecological Research across Time Scales in the Northeast German Lowland Observatory (TERENO-NE)}, series = {Vadose zone journal}, volume = {17}, journal = {Vadose zone journal}, number = {1}, publisher = {Soil Science Society of America}, address = {Madison}, issn = {1539-1663}, doi = {10.2136/vzj2018.06.0116}, pages = {25}, year = {2018}, abstract = {The Northeast German Lowland Observatory (TERENO-NE) was established to investigate the regional impact of climate and land use change. TERENO-NE focuses on the Northeast German lowlands, for which a high vulnerability has been determined due to increasing temperatures and decreasing amounts of precipitation projected for the coming decades. To facilitate in-depth evaluations of the effects of climate and land use changes and to separate the effects of natural and anthropogenic drivers in the region, six sites were chosen for comprehensive monitoring. In addition, at selected sites, geoarchives were used to substantially extend the instrumental records back in time. It is this combination of diverse disciplines working across different time scales that makes the observatory TERENO-NE a unique observation platform. We provide information about the general characteristics of the observatory and its six monitoring sites and present examples of interdisciplinary research activities at some of these sites. We also illustrate how monitoring improves process understanding, how remote sensing techniques are fine-tuned by the most comprehensive ground-truthing site DEMMIN, how soil erosion dynamics have evolved, how greenhouse gas monitoring of rewetted peatlands can reveal unexpected mechanisms, and how proxy data provides a long-term perspective of current ongoing changes.}, language = {en} } @article{NassarHohmannMicheletetal.2022, author = {Nassar, Yomna M. and Hohmann, Nicolas and Michelet, Robin and Gottwalt, Katharina and Meid, Andreas D. and Burhenne, J{\"u}rgen and Huisinga, Wilhelm and Haefeli, Walter E. and Mikus, Gerd and Kloft, Charlotte}, title = {Quantification of the Time Course of CYP3A Inhibition, Activation, and Induction Using a Population Pharmacokinetic Model of Microdosed Midazolam Continuous Infusion}, series = {Clinical Pharmacokinetics}, volume = {61}, journal = {Clinical Pharmacokinetics}, number = {11}, publisher = {Springer}, address = {Northcote}, issn = {0312-5963}, doi = {10.1007/s40262-022-01175-6}, pages = {1595 -- 1607}, year = {2022}, abstract = {Background Cytochrome P450 (CYP) 3A contributes to the metabolism of many approved drugs. CYP3A perpetrator drugs can profoundly alter the exposure of CYP3A substrates. However, effects of such drug-drug interactions are usually reported as maximum effects rather than studied as time-dependent processes. Identification of the time course of CYP3A modulation can provide insight into when significant changes to CYP3A activity occurs, help better design drug-drug interaction studies, and manage drug-drug interactions in clinical practice. Objective We aimed to quantify the time course and extent of the in vivo modulation of different CYP3A perpetrator drugs on hepatic CYP3A activity and distinguish different modulatory mechanisms by their time of onset, using pharmacologically inactive intravenous microgram doses of the CYP3A-specific substrate midazolam, as a marker of CYP3A activity. Methods Twenty-four healthy individuals received an intravenous midazolam bolus followed by a continuous infusion for 10 or 36 h. Individuals were randomized into four arms: within each arm, two individuals served as a placebo control and, 2 h after start of the midazolam infusion, four individuals received the CYP3A perpetrator drug: voriconazole (inhibitor, orally or intravenously), rifampicin (inducer, orally), or efavirenz (activator, orally). After midazolam bolus administration, blood samples were taken every hour (rifampicin arm) or every 15 min (remaining study arms) until the end of midazolam infusion. A total of 1858 concentrations were equally divided between midazolam and its metabolite, 1'-hydroxymidazolam. A nonlinear mixed-effects population pharmacokinetic model of both compounds was developed using NONMEM (R). CYP3A activity modulation was quantified over time, as the relative change of midazolam clearance encountered by the perpetrator drug, compared to the corresponding clearance value in the placebo arm. Results Time course of CYP3A modulation and magnitude of maximum effect were identified for each perpetrator drug. While efavirenz CYP3A activation was relatively fast and short, reaching a maximum after approximately 2-3 h, the induction effect of rifampicin could only be observed after 22 h, with a maximum after approximately 28-30 h followed by a steep drop to almost baseline within 1-2 h. In contrast, the inhibitory impact of both oral and intravenous voriconazole was prolonged with a steady inhibition of CYP3A activity followed by a gradual increase in the inhibitory effect until the end of sampling at 8 h. Relative maximum clearance changes were +59.1\%, +46.7\%, -70.6\%, and -61.1\% for efavirenz, rifampicin, oral voriconazole, and intravenous voriconazole, respectively. Conclusions We could distinguish between different mechanisms of CYP3A modulation by the time of onset. Identification of the time at which clearance significantly changes, per perpetrator drug, can guide the design of an optimal sampling schedule for future drug-drug interaction studies. The impact of a short-term combination of different perpetrator drugs on the paradigm CYP3A substrate midazolam was characterized and can define combination intervals in which no relevant interaction is to be expected.}, language = {en} } @misc{XieJiaRollsetal.2021, author = {Xie, Chao and Jia, Tianye and Rolls, Edmund T. and Robbins, Trevor W. and Sahakian, Barbara J. and Zhang, Jie and Liu, Zhaowen and Cheng, Wei and Luo, Qiang and Zac Lo, Chun-Yi and Schumann, Gunter and Feng, Jianfeng and Wang, He and Banaschewski, Tobias and Barker, Gareth J. and Bokde, Arun L.W. and B{\"u}chel, Christian and Quinlan, Erin Burke and Desrivi{\`e}res, Sylvane and Flor, Herta and Grigis, Antoine and Garavan, Hugh and Gowland, Penny and Heinz, Andreas and Hohmann, Sarah and Ittermann, Bernd and Martinot, Jean-Luc and Paill{\`e}re Martinot, Marie-Laure and Nees, Frauke and Papadopoulos Orfanos, Dimitri and Paus, Tom{\´a}š and Poustka, Luise and Fr{\"o}hner, Juliane H. and Smolka, Michael N. and Walter, Henrik and Whelan, Robert}, title = {Reward versus nonreward sensitivity of the medial versus lateral orbitofrontal cortex relates to the severity of depressive symptoms}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {3}, issn = {1866-8364}, doi = {10.25932/publishup-55788}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-557882}, pages = {13}, year = {2021}, abstract = {BACKGROUND: The orbitofrontal cortex (OFC) is implicated in depression. The hypothesis investigated was whether the OFC sensitivity to reward and nonreward is related to the severity of depressive symptoms. METHODS: Activations in the monetary incentive delay task were measured in the IMAGEN cohort at ages 14 years (n = 1877) and 19 years (n = 1140) with a longitudinal design. Clinically relevant subgroups were compared at ages 19 (high-severity group: n = 116; low-severity group: n = 206) and 14. RESULTS: The medial OFC exhibited graded activation increases to reward, and the lateral OFC had graded activation increases to nonreward. In this general population, the medial and lateral OFC activations were associated with concurrent depressive symptoms at both ages 14 and 19 years. In a stratified high-severity depressive symptom group versus control group comparison, the lateral OFC showed greater sensitivity for the magnitudes of activations related to nonreward in the high-severity group at age 19 (p = .027), and the medial OFC showed decreased sensitivity to the reward magnitudes in the high-severity group at both ages 14 (p = .002) and 19 (p = .002). In a longitudinal design, there was greater sensitivity to nonreward of the lateral OFC at age 14 for those who exhibited high depressive symptom severity later at age 19 (p = .003). CONCLUSIONS: Activations in the lateral OFC relate to sensitivity to not winning, were associated with high depressive symptom scores, and at age 14 predicted the depressive symptoms at ages 16 and 19. Activations in the medial OFC were related to sensitivity to winning, and reduced reward sensitivity was associated with concurrent high depressive symptom scores.}, language = {en} } @article{XieJiaRollsetal.2021, author = {Xie, Chao and Jia, Tianye and Rolls, Edmund T. and Robbins, Trevor W. and Sahakian, Barbara J. and Zhang, Jie and Liu, Zhaowen and Cheng, Wei and Luo, Qiang and Zac Lo, Chun-Yi and Schumann, Gunter and Feng, Jianfeng and Wang, He and Banaschewski, Tobias and Barker, Gareth J. and Bokde, Arun L.W. and B{\"u}chel, Christian and Quinlan, Erin Burke and Desrivi{\`e}res, Sylvane and Flor, Herta and Grigis, Antoine and Garavan, Hugh and Gowland, Penny and Heinz, Andreas and Hohmann, Sarah and Ittermann, Bernd and Martinot, Jean-Luc and Paill{\`e}re Martinot, Marie-Laure and Nees, Frauke and Papadopoulos Orfanos, Dimitri and Paus, Tom{\´a}š and Poustka, Luise and Fr{\"o}hner, Juliane H. and Smolka, Michael N. and Walter, Henrik and Whelan, Robert}, title = {Reward versus nonreward sensitivity of the medial versus lateral orbitofrontal cortex relates to the severity of depressive symptoms}, series = {Biological Psychiatry: Cognitive Neuroscience and Neuroimaging}, volume = {6}, journal = {Biological Psychiatry: Cognitive Neuroscience and Neuroimaging}, number = {3}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {2451-9022}, doi = {10.1016/j.bpsc.2020.08.017}, pages = {259 -- 269}, year = {2021}, abstract = {BACKGROUND: The orbitofrontal cortex (OFC) is implicated in depression. The hypothesis investigated was whether the OFC sensitivity to reward and nonreward is related to the severity of depressive symptoms. METHODS: Activations in the monetary incentive delay task were measured in the IMAGEN cohort at ages 14 years (n = 1877) and 19 years (n = 1140) with a longitudinal design. Clinically relevant subgroups were compared at ages 19 (high-severity group: n = 116; low-severity group: n = 206) and 14. RESULTS: The medial OFC exhibited graded activation increases to reward, and the lateral OFC had graded activation increases to nonreward. In this general population, the medial and lateral OFC activations were associated with concurrent depressive symptoms at both ages 14 and 19 years. In a stratified high-severity depressive symptom group versus control group comparison, the lateral OFC showed greater sensitivity for the magnitudes of activations related to nonreward in the high-severity group at age 19 (p = .027), and the medial OFC showed decreased sensitivity to the reward magnitudes in the high-severity group at both ages 14 (p = .002) and 19 (p = .002). In a longitudinal design, there was greater sensitivity to nonreward of the lateral OFC at age 14 for those who exhibited high depressive symptom severity later at age 19 (p = .003). CONCLUSIONS: Activations in the lateral OFC relate to sensitivity to not winning, were associated with high depressive symptom scores, and at age 14 predicted the depressive symptoms at ages 16 and 19. Activations in the medial OFC were related to sensitivity to winning, and reduced reward sensitivity was associated with concurrent high depressive symptom scores.}, language = {en} }