@article{VanHoutTachmazidouBackmanetal.2020, author = {Van Hout, Cristopher V. and Tachmazidou, Ioanna and Backman, Joshua D. and Hoffman, Joshua D. and Liu, Daren and Pandey, Ashutosh K. and Gonzaga-Jauregui, Claudia and Khalid, Shareef and Ye, Bin and Banerjee, Nilanjana and Li, Alexander H. and O'Dushlaine, Colm and Marcketta, Anthony and Staples, Jeffrey and Schurmann, Claudia and Hawes, Alicia and Maxwell, Evan and Barnard, Leland and Lopez, Alexander and Penn, John and Habegger, Lukas and Blumenfeld, Andrew L. and Bai, Xiaodong and O'Keeffe, Sean and Yadav, Ashish and Praveen, Kavita and Jones, Marcus and Salerno, William J. and Chung, Wendy K. and Surakka, Ida and Willer, Cristen J. and Hveem, Kristian and Leader, Joseph B. and Carey, David J. and Ledbetter, David H. and Cardon, Lon and Yancopoulos, George D. and Economides, Aris and Coppola, Giovanni and Shuldiner, Alan R. and Balasubramanian, Suganthi and Cantor, Michael and Nelson, Matthew R. and Whittaker, John and Reid, Jeffrey G. and Marchini, Jonathan and Overton, John D. and Scott, Robert A. and Abecasis, Goncalo R. and Yerges-Armstrong, Laura M. and Baras, Aris}, title = {Exome sequencing and characterization of 49,960 individuals in the UK Biobank}, series = {Nature : the international weekly journal of science}, volume = {586}, journal = {Nature : the international weekly journal of science}, number = {7831}, publisher = {Macmillan Publishers Limited}, address = {London}, organization = {Regeneron Genetics Ctr}, issn = {0028-0836}, doi = {10.1038/s41586-020-2853-0}, pages = {749 -- 756}, year = {2020}, abstract = {The UK Biobank is a prospective study of 502,543 individuals, combining extensive phenotypic and genotypic data with streamlined access for researchers around the world(1). Here we describe the release of exome-sequence data for the first 49,960 study participants, revealing approximately 4 million coding variants (of which around 98.6\% have a frequency of less than 1\%). The data include 198,269 autosomal predicted loss-of-function (LOF) variants, a more than 14-fold increase compared to the imputed sequence. Nearly all genes (more than 97\%) had at least one carrier with a LOF variant, and most genes (more than 69\%) had at least ten carriers with a LOF variant. We illustrate the power of characterizing LOF variants in this population through association analyses across 1,730 phenotypes. In addition to replicating established associations, we found novel LOF variants with large effects on disease traits, includingPIEZO1on varicose veins,COL6A1on corneal resistance,MEPEon bone density, andIQGAP2andGMPRon blood cell traits. We further demonstrate the value of exome sequencing by surveying the prevalence of pathogenic variants of clinical importance, and show that 2\% of this population has a medically actionable variant. Furthermore, we characterize the penetrance of cancer in carriers of pathogenicBRCA1andBRCA2variants. Exome sequences from the first 49,960 participants highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community.
Exome sequences from the first 49,960 participants in the UK Biobank highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community.}, language = {en} } @article{LopezManovaHoppeetal.2018, author = {Lopez, Carlos G. and Manova, Anna and Hoppe, Corinna and Dreja, Michael and Schmiedel, Peter and Job, Mareile and Richtering, Walter and B{\"o}ker, Alexander and Tsarkova, Larisa A.}, title = {Combined UV-Vis-absorbance and reflectance spectroscopy study of dye transfer kinetics in aqueous mixtures of surfactants}, series = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, volume = {550}, journal = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7757}, doi = {10.1016/j.colsurfa.2018.04.024}, pages = {74 -- 81}, year = {2018}, abstract = {We report an analytical approach to study the competitive processes of solubilisation in micelles and of adsorption onto hydrophobic surfaces of poorly soluble hydrophobic dyes. The method is demonstrated on model systems containing two sources of Disperse Red 60: a bulk powder and a donor red textile, with molecularly dissolved dye stabilised in an aqueous environment by mixed micelles of anionic and non-ionic surfactants. The process of dye transfer between a donor textile (red polyester), surfactant micelles and an acceptor textile (white polyamide) was quantified by a combination of colorimetric analyses. UV-Vis absorbance was used to follow the extraction of the dye and to evaluate the solubilisation capacity of the micellar solution. A calibration curve for textile reflectance versus the adsorbed dye was generated to quantify the mass of dye transferred onto the acceptor textile. A combination of both techniques allowed us to compare the amount of dye desorbed from the donor textile and adsorbed onto the acceptor textile as a function of time for systems undergoing exhaustion-solubilisation mechanisms and only solubilisation mechanism. Up to similar or equal to 10 min of the washing process, the released dye is predominantly solubilised in surfactant micelles. At later times, the adsorption of the dye on the hydrophobic surface is energetically favoured. The shift of the desorption equilibrium in the presence of the acceptor textile results in similar or equal to 30\% increase in the release of the dye. The reported methodology provides direct comparative analysis between the solubilisation capacity of amphiphilic stabilisers and the tendency of the dye to adsorb on solid substrates, important for designing novel concepts of disperse dye solubilisation and dye transfer inhibition during textile washing.}, language = {en} }