@misc{MorelCastroFossatietal.2014, author = {Morel, T. and Castro, Norberto and Fossati, Luca and Hubrig, Swetlana and Langer, N. and Przybilla, Norbert and Sch{\"o}ller, Markus and Carroll, Thorsten Anthony and Ilyin, Ilya and Irrgang, Andreas and Oskinova, Lidia M. and Schneider, Fabian R. N. and Simon D{\´i}az, Sergio and Briquet, Maryline and Gonz{\´a}lez, Jean-Francois and Kharchenko, Nina and Nieva, M.-F. and Scholz, Ralf-Dieter and de Koter, Alexander and Hamann, Wolf-Rainer and Herrero, Artemio and Ma{\´i}z Apell{\´a}niz, Jesus and Sana, Hugues and Arlt, Rainer and Barb{\´a}, Rodolfo H. and Dufton, Polly and Kholtygin, Alexander and Mathys, Gautier and Piskunov, Anatoly E. and Reisenegger, Andreas and Spruit, H. and Yoon, S.-C.}, title = {The B fields in OB stars (BOB) survey}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {821}, issn = {1866-8372}, doi = {10.25932/publishup-41523}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-415238}, pages = {8}, year = {2014}, abstract = {The B fields in OB stars (BOB) survey is an ESO large programme collecting spectropolarimetric observations for a large number of early-type stars in order to study the occurrence rate, properties, and ultimately the origin of magnetic fields in massive stars. As of July 2014, a total of 98 objects were observed over 20 nights with FORS2 and HARPSpol. Our preliminary results indicate that the fraction of magnetic OB stars with an organised, detectable field is low. This conclusion, now independently reached by two different surveys, has profound implications for any theoretical model attempting to explain the field formation in these objects. We discuss in this contribution some important issues addressed by our observations (e.g., the lower bound of the field strength) and the discovery of some remarkable objects.}, language = {en} } @article{HubrigSchoellerKholtyginetal.2015, author = {Hubrig, Swetlana and Sch{\"o}ller, Markus and Kholtygin, Alexander F. and Tsumura, Hiroki and Hoshino, Akio and Kitamoto, Shunji and Oskinova, Lidia M. and Ignace, Richard and Todt, Helge Tobias and Ilyin, Ilya}, title = {New multiwavelength observations of the Of?p star CPD-28 degrees 2561}, series = {Monthly notices of the Royal Astronomical Society}, volume = {447}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stu2516}, pages = {1885 -- 1894}, year = {2015}, abstract = {A rather strong mean longitudinal magnetic field of the order of a few hundred gauss was detected a few years ago in the Of?p star CPD -28 degrees 2561 using FORS2 (FOcal Reducer low dispersion Spectrograph 2) low-resolution spectropolarimetric observations. In this work, we present additional low-resolution spectropolarimetric observations obtained during several weeks in 2013 December using FORS 2 mounted at the 8-m Antu telescope of the Very Large Telescope (VLT). These observations cover a little less than half of the stellar rotation period of 73.41 d mentioned in the literature. The behaviour of the mean longitudinal magnetic field is consistent with the assumption of a single-wave variation during the stellar rotation cycle, indicating a dominant dipolar contribution to the magnetic field topology. The estimated polar strength of the surface dipole B-d is larger than 1.15 kG. Further, we compared the behaviour of the line profiles of various elements at different rotation phases associated with different magnetic field strengths. The strongest contribution of the emission component is observed at the phases when the magnetic field shows a negative or positive extremum. The comparison of the spectral behaviour of CPD -28 degrees 2561 with that of another Of?p star, HD 148937 of similar spectral type, reveals remarkable differences in the degree of variability between both stars. Finally, we present new X-ray observations obtained with the Suzaku X-ray Observatory. We report that the star is X-ray bright with log L-X/L-bol approximate to -5.7. The low-resolution X-ray spectra reveal the presence of a plasma heated up to 24 MK. We associate the 24 MK plasma in CPD -28 degrees 2561 with the presence of a kG strong magnetic field capable to confine stellar wind.}, language = {en} }