@article{RichterSchulzSubkowskietal.2016, author = {Richter, Marina Juliane and Schulz, Alexander and Subkowski, Thomas and B{\"o}ker, Alexander}, title = {Adsorption and rheological behavior of an amphiphilic protein at oil/water interfaces}, series = {Journal of colloid and interface science}, volume = {479}, journal = {Journal of colloid and interface science}, publisher = {Elsevier}, address = {San Diego}, issn = {0021-9797}, doi = {10.1016/j.jcis.2016.06.062}, pages = {199 -- 206}, year = {2016}, abstract = {Hydrophobins are highly surface active proteins which self-assemble at hydrophilic-hydrophobic interfaces into amphipathic membranes. We investigate hydrophobin self-assembly at oil/water interfaces to deepen the understanding of protein behavior in order to improve our biomimetic synthesis. Therefore, we carried out pendant drop measurements of hydrophobin stabilized oil/water systems determining the time-dependent IFT and the dilatational rheology with additional adaptation to the Serrien protein model. We show that the class I hydrophobin H*Protein B adsorbs at an oil/water interface where it forms a densely-packed interfacial protein layer, which dissipates energy during droplet oscillation. Furthermore, the interfacial protein layer exhibits shear thinning behavior. (C) 2016 Elsevier Inc. All rights reserved.}, language = {en} } @article{SechiFreitasWuennemannetal.2016, author = {Sechi, Antonio and Freitas, Joana M. G. and W{\"u}nnemann, Patrick and T{\"o}pel, Alexander and Paschoalin, Rafaella Takehara and Ullmann, Sabrina and Schr{\"o}der, Ricarda and Aydin, G{\"u}lcan and R{\"u}tten, Stephan and B{\"o}ker, Alexander and Zenke, Martin and Pich, Andrij}, title = {Surface-Grafted Nanogel Arrays Direct Cell Adhesion and Motility}, series = {Advanced materials interfaces}, volume = {3}, journal = {Advanced materials interfaces}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.201600455}, pages = {13}, year = {2016}, abstract = {It has long been appreciated that material chemistry and topology profoundly affect cell adhesion and migration. Here, aqueous poly(N- isopropyl acrylamide) nanogels are designed, synthesized and printed in form of colloidal arrays on glass substrates using wrinkled polydimethylsiloxane templates. Using low-temperature plasma treatment, nanogels are chemically grafted onto glass supports thus leading to highly stable nanogel layers in cell culture media. Liquid cell atomic force microscopy investigations show that surface-grafted nanogels retain their swelling behavior in aqueous media and that extracellular matrix protein coating do not alter their stability and topography. It is demonstrated that surface-grafted nanogels could serve as novel substrates for the analysis of cell adhesion and migration. Nanogels influence size, speed, and dynamics of focal adhesions and cell motility forcing cells to move along highly directional trajectories. Moreover, modulation of nanogel state or spacing serves as an effective tool for regulation of cell motility. It is suggested that nanogel arrays deposited on solid surfaces could be used to provide a precise and tunable system to understand and control cell migration. Additionally, such nanogel arrays will contribute to the development of implantable systems aimed at supporting and enhancing cell migration during, for instance, wound healing and tissue regeneration.}, language = {en} } @article{DaiMateGlebeetal.2018, author = {Dai, Xiaolin and Mate, Diana M. and Glebe, Ulrich and Garakani, Tayebeh Mirzaei and K{\"o}rner, Andrea and Schwaneberg, Ulrich and B{\"o}ker, Alexander}, title = {Sortase-mediated ligation of purely artificial building blocks}, series = {Polymers}, volume = {10}, journal = {Polymers}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym10020151}, pages = {13}, year = {2018}, abstract = {Sortase A (SrtA) from Staphylococcus aureus has been often used for ligating a protein with other natural or synthetic compounds in recent years. Here we show that SrtA-mediated ligation (SML) is universally applicable for the linkage of two purely artificial building blocks. Silica nanoparticles (NPs), poly(ethylene glycol) and poly(N-isopropyl acrylamide) are chosen as synthetic building blocks. As a proof of concept, NP-polymer, NP-NP, and polymer-polymer structures are formed by SrtA catalysis. Therefore, the building blocks are equipped with the recognition sequence needed for SrtA reaction-the conserved peptide LPETG-and a pentaglycine motif. The successful formation of the reaction products is shown by means of transmission electron microscopy (TEM), matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-ToF MS), and dynamic light scattering (DLS). The sortase catalyzed linkage of artificial building blocks sets the stage for the development of a new approach to link synthetic structures in cases where their synthesis by established chemical methods is complicated.}, language = {en} } @article{LeiendeckerLichtBorghsetal.2018, author = {Leiendecker, Mai-Thi and Licht, Christopher J. and Borghs, Jannik and Mooney, David J. and Zimmermann, Marc and B{\"o}ker, Alexander}, title = {Physical polyurethane hydrogels via charge shielding through acids or salts}, series = {Macromolecular rapid communications}, volume = {39}, journal = {Macromolecular rapid communications}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201700711}, pages = {5}, year = {2018}, abstract = {Physical hydrogels with tunable stress-relaxation and excellent stress recovery are formed from anionic polyurethanes via addition of acids, monovalent salts, or divalent salts. Gel properties can be widely adjusted through pH, salt valence, salt concentration, and monomer composition. We propose and investigate a novel gelation mechanism based on a colloidal system interacting through charge repulsion and chrage shielding, allowing a broad use of the material, from acidic (pH 4-5.5) to pH-neutral hydrogels with Young's moduli ranging from 10 to 140 kPa.}, language = {en} } @article{ZimmermannGrigorievPuretskiyetal.2018, author = {Zimmermann, Marc and Grigoriev, Dmitry and Puretskiy, Nikolay and B{\"o}ker, Alexander}, title = {Characteristics of microcontact printing with polyelectrolyte ink for the precise preparation of patches on silica particles}, series = {RSC Advances}, volume = {8}, journal = {RSC Advances}, number = {69}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c8ra07955b}, pages = {39241 -- 39247}, year = {2018}, abstract = {This publication demonstrates the abilities of a precise and straightforward microcontact printing approach for the preparation of patchy silica particles. In a broad particle size range, it is possible to finely tune the number and parameters of three-dimensional patches like diameter and thickness using only polyethyleneimine ink, poly(dimethoxysilane) as stamp material and a suitable release solvent.}, language = {en} } @article{QiuZhangBicketal.2021, author = {Qiu, Liang and Zhang, Haoran and Bick, Thomas and Martin, Johannes and Wendler, Petra and B{\"o}ker, Alexander and Glebe, Ulrich and Xing, Chengfen}, title = {Construction of highly ordered glyco-inside nano-assemblies through RAFT dispersion polymerization of galactose-decorated monomer}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {60}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {20}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.202015692}, pages = {11098 -- 11103}, year = {2021}, abstract = {Glyco-assemblies derived from amphiphilic sugar-decorated block copolymers (ASBCs) have emerged prominently due to their wide application, for example, in biomedicine and as drug carriers. However, to efficiently construct these glyco-assemblies is still a challenge. Herein, we report an efficient technology for the synthesis of glyco-inside nano-assemblies by utilizing RAFT polymerization of a galactose-decorated methacrylate for polymerization-induced self-assembly (PISA). Using this approach, a series of highly ordered glyco-inside nano-assemblies containing intermediate morphologies were fabricated by adjusting the length of the hydrophobic glycoblock and the polymerization solids content. A specific morphology of complex vesicles was captured during the PISA process and the formation mechanism is explained by the morphology of its precursor and intermediate. Thus, this method establishes a powerful route to fabricate glyco-assemblies with tunable morphologies and variable sizes, which is significant to enable the large-scale fabrication and wide application of glyco-assemblies.}, language = {en} } @article{AkarsuGrobeNowaczyketal.2021, author = {Akarsu, Pinar and Grobe, Richard and Nowaczyk, Julius and Hartlieb, Matthias and Reinicke, Stefan and B{\"o}ker, Alexander and Sperling, Marcel and Reifarth, Martin}, title = {Solid-phase microcontact printing for precise patterning of rough surfaces}, series = {ACS applied polymer materials}, volume = {3}, journal = {ACS applied polymer materials}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {2637-6105}, doi = {10.1021/acsapm.1c00024}, pages = {2420 -- 2431}, year = {2021}, abstract = {We present a microcontact printing (mu CP) routine suitable to introduce defined (sub-) microscale patterns on surface substrates exhibiting a high capillary activity and receptive to a silane-based chemistry. This is achieved by transferring functional trivalent alkoxysilanes, such as (3-aminopropyl)-triethoxysilane (APTES) as a low-molecular weight ink via reversible covalent attachment to polymer brushes grafted from elastomeric polydimethylsiloxane (PDMS) stamps. The brushes consist of poly{N-[tris(hydroxymethyl)-methyl]acrylamide} (PTrisAAm) synthesized by reversible addition-fragmentation chain-transfer (RAFT)-polymerization and used for immobilization of the alkoxysilane-based ink by substituting the alkoxy moieties with polymer-bound hydroxyl groups. Upon physical contact of the silane-carrying polymers with surfaces, the conjugated silane transfers to the substrate, thus completely suppressing ink-flow and, in turn, maximizing printing accuracy even for otherwise not addressable substrate topographies. We provide a concisely conducted investigation on polymer brush formation using atomic force microscopy (AFM) and ellipsometry as well as ink immobilization utilizing two-dimensional proton nuclear Overhauser enhancement spectroscopy (H-1-H-1-NOESY-NMR). We analyze the mu CP process by printing onto Si-wafers and show how even distinctively rough surfaces can be addressed, which otherwise represent particularly challenging substrates.}, language = {en} } @article{WangSperlingReifarthetal.2020, author = {Wang, Xuepu and Sperling, Marcel and Reifarth, Martin and B{\"o}ker, Alexander}, title = {Shaping metallic nanolattices}, series = {Small}, volume = {16}, journal = {Small}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1613-6810}, doi = {10.1002/smll.201906721}, pages = {1 -- 8}, year = {2020}, abstract = {A method for the fabrication of well-defined metallic nanostructures is presented here in a simple and straightforward fashion. As an alternative to lithographic techniques, this routine employs microcontact printing utilizing wrinkled stamps, which are prepared from polydimethylsiloxane (PDMS), and includes the formation of hydrophobic stripe patterns on a substrate via the transfer of oligomeric PDMS. Subsequent backfilling of the interspaces between these stripes with a hydroxyl-functional poly(2-vinyl pyridine) then provides the basic pattern for the deposition of citrate-stabilized gold nanoparticles promoted by electrostatic interaction. The resulting metallic nanostripes can be further customized by peeling off particles in a second microcontact printing step, which employs poly(ethylene imine) surface-decorated wrinkled stamps, to form nanolattices. Due to the independent adjustability of the period dimensions of the wrinkled stamps and stamp orientation with respect to the substrate, particle arrays on the (sub)micro-scale with various kinds of geometries are accessible in a straightforward fashion. This work provides an alternative, cost-effective, and scalable surface-patterning technique to fabricate nanolattice structures applicable to multiple types of functional nanoparticles. Being a top-down method, this process could be readily implemented into, e.g., the fabrication of optical and sensing devices on a large scale.}, language = {en} } @article{MehrGrigorievHeatonetal.2020, author = {Mehr, Fatemeh Naderi and Grigoriev, Dmitry and Heaton, Rebecca and Baptiste, Joshua and Stace, Anthony J. and Puretskiy, Nikolay and Besley, Elena and B{\"o}ker, Alexander}, title = {Self-assembly behavior of oppositely charged inverse bipatchy microcolloids}, series = {Small : nano micro}, volume = {16}, journal = {Small : nano micro}, number = {14}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1613-6810}, doi = {10.1002/smll.202000442}, pages = {9}, year = {2020}, abstract = {A directed attractive interaction between predefined "patchy" sites on the surfaces of anisotropic microcolloids can provide them with the ability to self-assemble in a controlled manner to build target structures of increased complexity. An important step toward the controlled formation of a desired superstructure is to identify reversible electrostatic interactions between patches which allow them to align with one another. The formation of bipatchy particles with two oppositely charged patches fabricated using sandwich microcontact printing is reported. These particles spontaneously self-aggregate in solution, where a diversity of short and long chains of bipatchy particles with different shapes, such as branched, bent, and linear, are formed. Calculations show that chain formation is driven by a combination of attractive electrostatic interactions between oppositely charged patches and the charge-induced polarization of interacting particles.}, language = {en} } @article{DoeringGrigorievTapioetal.2021, author = {Doering, Ulrike and Grigoriev, Dmitry and Tapio, Kosti and Rosencrantz, Sophia and Rosencrantz, Ruben R. and Bald, Ilko and B{\"o}ker, Alexander}, title = {About the mechanism of ultrasonically induced protein capsule formation}, series = {RSC Advances : an international journal to further the chemical sciences / Royal Society of Chemistry}, volume = {11}, journal = {RSC Advances : an international journal to further the chemical sciences / Royal Society of Chemistry}, number = {27}, publisher = {RSC Publishing}, address = {London}, issn = {2046-2069}, doi = {10.1039/d0ra08100k}, pages = {16152 -- 16157}, year = {2021}, abstract = {In this paper, we propose a consistent mechanism of protein microcapsule formation upon ultrasound treatment. Aqueous suspensions of bovine serum albumin (BSA) microcapsules filled with toluene are prepared by use of high-intensity ultrasound following a reported method. Stabilization of the oil-in-water emulsion by the adsorption of the protein molecules at the interface of the emulsion droplets is accompanied by the creation of the cross-linked capsule shell due to formation of intermolecular disulfide bonds caused by highly reactive species like superoxide radicals generated sonochemically. The evidence for this mechanism, which until now remained elusive and was not proven properly, is presented based on experimental data from SDS-PAGE, Raman spectroscopy and dynamic light scattering.}, language = {en} } @article{WagnerLazarSchnakenbergetal.2016, author = {Wagner, Tom and Lazar, Jaroslav and Schnakenberg, Uwe and B{\"o}ker, Alexander}, title = {In situ Electrothemical Impedance Spectroscopy of Electrostatically Driven Selective Gold Nanoparticle Adsorption on Block Copolymer Lamellae}, series = {Trials}, volume = {8}, journal = {Trials}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.6b07708}, pages = {27282 -- 27290}, year = {2016}, abstract = {Electrostatic attraction between charged nano particles and oppositely charged nanopatterned polymeric films enables tailored structuring of functional nanoscopic surfaces. The bottom-up fabrication of organic/inorganic composites for example bears promising potential toward cheap fabrication of catalysts, optical sensors, and the manufacture of miniaturized electric circuitry. However, only little is known about the time-dependent adsorption behavior and the electronic or ionic charge transfer in the film bulk and at interfaces during nanoparticle assembly via electrostatic interactions. In situ electrochemical impedance spectroscopy (EIS) in combination with a microfluidic system for fast and reproducible liquid delivery was thus applied to monitor the selective deposition of negatively charged gold nanoparticles on top of positively charged poly(2-vinylpyridinium) (qP2VP) domains of phase separated lamellar poly(styrene)-block-poly(2-vinylpyridinium) (PS-b-qP2VP) diblock copolymer thin films. The acquired impedance data delivered information with respect to interfacial charge alteration, ionic diffusion, and the charge dependent nanoparticle adsorption kinetics, considering this yet unexplored system. We demonstrate that the selective adsorption of negatively charged gold nanoparticles (AuNPs) on positively charged qP2VP domains of lamellar PS-b-qP2VP thin films can indeed be tracked by EIS. Moreover, we show that the nanoparticle adsorption kinetics and the nanoparticle packing density are functions of the charge density in the qP2VP domains.}, language = {en} } @article{KathreinBaiCurrivanIncorviaetal.2015, author = {Kathrein, Christine C. and Bai, Wubin and Currivan-Incorvia, Jean Anne and Liontos, George and Ntetsikas, Konstantinos and Avgeropoulos, Apostolos and B{\"o}ker, Alexander and Tsarkova, Larisa and Ross, Caroline A.}, title = {Combining Graphoepitaxy and Electric Fields toward Uniaxial Alignment of Solvent-Annealed Polystyrene-b-Poly(dimethylsiloxane) Block Copolymers}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {27}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.5b03354}, pages = {6890 -- 6898}, year = {2015}, abstract = {We report a combined directing effect of the simultaneously applied graphoepitaxy and electric field on the self-assembly of cylinder forming polystyrene-b-poly(dimethylsiloxane) block copolymer in thin films. A correlation length of up to 20 mu m of uniaxial ordered striped patterns is an order of magnitude greater than that produced by either graphoepitaxy or electric field alignment alone and is achieved at reduced annealing times. The angle between the electric field direction and the topographic guides as well as the dimensions of the trenches affected both the quality of the ordering and the direction of the orientation of cylindrical domains: parallel or perpendicular to the topographic features. We quantified the interplay between the electric field and the geometry of the topographic structures by constructing the phase diagram of microdomain orientation. This combined approach allows the fabrication of highly ordered block copolymer structures using macroscopically prepatterned photolithographic substrates.}, language = {en} } @article{LiedelLewinTsarkovaetal.2015, author = {Liedel, Clemens and Lewin, Christian and Tsarkova, Larisa and B{\"o}ker, Alexander}, title = {Reversible Switching of Block Copolymer Nanopatterns by Orthogonal Electric Fields}, series = {Small}, volume = {11}, journal = {Small}, number = {45}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1613-6810}, doi = {10.1002/smll.201502259}, pages = {6058 -- 6064}, year = {2015}, abstract = {It is demonstrated that the orientation of striped patterns can be reversibly switched between two perpendicular in-plane orientations upon exposure to electric fields. The results on thin films of symmetric polystyrene-block-poly(2-vinyl pyridine) polymer in the intermediate segregation regime disclose two types of reorientation mechanisms from perpendicular to parallel relative to the electric field orientation. Domains orient via grain rotation and via formation of defects such as stretched undulations and temporal phase transitions. The contribution of additional fields to the structural evolution is also addressed to elucidate the generality of the observed phenomena. In particular solvent effects are considered. This study reveals the stabilization of the meta-stable in-plane oriented lamella due to sequential swelling and quenching of the film. Further, the reorientation behavior of lamella domains blended with selective nanoparticles is addressed, which affect the interfacial tensions of the blocks and hence introduce another internal field to the studied system. Switching the orientation of aligned block copolymer patterns between two orthogonal directions may open new applications of nanomaterials as switchable electric nanowires or optical gratings.}, language = {en} } @article{ZhouWuennemannKuhnetal.2016, author = {Zhou, Qihui and Wuennemann, Patrick and Kuhn, Philipp Till and de Vries, Joop and Helmin, Marta and B{\"o}ker, Alexander and van Kooten, Theo G. and van Rijn, Patrick}, title = {Mechanical Properties of Aligned Nanotopologies for Directing Cellular Behavior}, series = {Advanced materials interfaces}, volume = {3}, journal = {Advanced materials interfaces}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.201600275}, pages = {10}, year = {2016}, abstract = {Tailoring cell-surface interactions is important for the of design medical implants as well as regenerative medicine and tissue engineering materials. Here the single parameter system is transcended via translating hard nanotopology into soft polymeric hydrogel structures via hydrogel imprinting lithography. The response of these cells to the nanotopology of the same dimensions but with different mechanical properties displays unexpected behavior between "hard" tissue cells and "soft" tissue cells.}, language = {en} } @article{PesterSchmidtRuppeletal.2015, author = {Pester, Christian W. and Schmidt, Kristin and Ruppel, Markus and Schoberth, Heiko G. and B{\"o}ker, Alexander}, title = {Electric-Field-Induced Order-Order Transition from Hexagonally Perforated Lamellae to Lamellae}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {48}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.5b01336}, pages = {6206 -- 6213}, year = {2015}, abstract = {Block copolymers form a variety of microphase morphologies due to their ability to phase separate. The hexagonally perforated lamellar (HPL) morphology represents an unusually long-lived, nonequilibrium transient structure between lamellar and cylindrical phases. We present a detailed study of a concentrated, HPL-forming poly(styrene-b-isoprene) diblock copolymer solution in toluene in the presence of an electric field. We will show that this phase is readily aligned by a moderate electric field and provide experimental evidence for an electric-field-induced order order transition toward the lamellar phase under sufficiently strong fields. This process is shown to be fully reversible as lamellar perforations reconnect immediately upon secession of the external stimulus, recovering highly aligned perforated lamellae.}, language = {en} } @article{KathreinKipnusuKremeretal.2015, author = {Kathrein, Christine C. and Kipnusu, Wycliffe K. and Kremer, Friedrich and B{\"o}ker, Alexander}, title = {Birefringence Analysis of the Effect of Electric Fields on the Order-Disorder Transition Temperature of Lamellae Forming Block Copolymers}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {48}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.5b00512}, pages = {3354 -- 3359}, year = {2015}, abstract = {A detailed birefringence analysis of the effect of strong dc electric fields on the order-disorder transition temperature (T-ODT) of lamella forming block copolymers is reported. The setup presented here enabled the measurement of the T-ODT with high temperature resolution while the birefringence measurements were nondestructive and straightforward compared to alternative methods. A downward shift in the transition temperature was found for all samples upon application of the electric field. The data indicate that the dominating parameter that evokes the mixing of block copolymers when exposed to electric fields is the difference in dielectric permittivity Delta epsilon between the block copolymer constituents. The extent to which the T-ODT is shifted is furthermore influenced by the degree of polymerization N. Shifts in the transition temperature of up to 7 degrees C were found upon application of an electric field of 5 kV/mm.}, language = {en} } @article{LiuBoeker2016, author = {Liu, Bing and B{\"o}ker, Alexander}, title = {Measuring rotational diffusion of colloidal spheres with confocal microscopy}, series = {Soft matter}, volume = {12}, journal = {Soft matter}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c6sm01082b}, pages = {6033 -- 6037}, year = {2016}, abstract = {We report an experimental method to measure the translational and rotational dynamics of colloidal spheres in three dimensions with confocal microscopy and show that the experimental values reasonably agree with the theoretical values. This method can be extended to study rotational dynamics in concentrated colloidal systems and complex bio-systems.}, language = {en} } @article{CharanKinzelGlebeetal.2016, author = {Charan, Himanshu and Kinzel, Julia and Glebe, Ulrich and Anand, Deepak and Garakani, Tayebeh Mirzaei and Zhu, Leilei and Bocola, Marco and Schwaneberg, Ulrich and B{\"o}ker, Alexander}, title = {Grafting PNIPAAm from beta-barrel shaped transmembrane nanopores}, series = {Biomaterials : biomaterials reviews online}, volume = {107}, journal = {Biomaterials : biomaterials reviews online}, publisher = {Elsevier}, address = {Oxford}, issn = {0142-9612}, doi = {10.1016/j.biomaterials.2016.08.033}, pages = {115 -- 123}, year = {2016}, abstract = {The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a beta-barrel transmembrane protein of Escherichia coli). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the beta-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N-isopropylacrylamide (NIPAAm) polymerized under copper mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{GarakaniLiuGlebeetal.2019, author = {Garakani, Tayebeh Mirzaei and Liu, Zhanzhi and Glebe, Ulrich and Gehrmann, Julia and Lazar, Jaroslav and Mertens, Marie Anna Stephanie and M{\"o}ller, Mieke and Hamzelui, Niloofar and Zhu, Leilei and Schnakenberg, Uwe and B{\"o}ker, Alexander and Schwaneberg, Ulrich}, title = {In Situ Monitoring of Membrane Protein Insertion into Block Copolymer Vesicle Membranes and Their Spreading via Potential-Assisted Approach}, series = {ACS applied materials \& interfaces}, volume = {11}, journal = {ACS applied materials \& interfaces}, number = {32}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.9b09302}, pages = {29276 -- 29289}, year = {2019}, abstract = {Synthosomes are polymer vesicles with trans membrane proteins incorporated into block copolymer membranes. They have been used for selective transport in or out of the vesicles as well as catalysis inside the compartments. However, both the insertion process of the membrane protein, forming nanopores, and the spreading of the vesicles on planar substrates to form solid-supported biomimetic membranes have been rarely studied yet. Herein, we address these two points and, first, shed light on the real-time monitoring of protein insertion via isothermal titration calorimetry. Second, the spreading process on different solid supports, namely, SiO2, glass, and gold, via different techniques like spin- and dip-coating as well as a completely new approach of potential-assisted spreading on gold surfaces was studied. While inhomogeneous layers occur via traditional methods, our proposed potential-assisted strategy to induce adsorption of positively charged vesicles by applying negative potential on the electrode leads to remarkable vesicle spreading and their further fusion to form more homogeneous planar copolymer films on gold. The polymer vesicles in our study are formed from amphiphilic copolymers poly(2-methyl oxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyl oxazoline) (PMOXA-b-PDMS-b-PMOXA). Engineered variants of the transmembrane protein ferric hydroxamate uptake protein component A (FhuA), one of the largest beta-barrel channel proteins, are used as model nanopores. The incorporation of FhuA Delta 1-160 is shown to facilitate the vesicle spreading process further. Moreover, high accessibility of cysteine inside the channel was proven by linkage of a fluorescent dye inside the engineered variant FhuA Delta CVFtev and hence preserved functionality of the channels after spreading. The porosity and functionality of the spread synthosomes on the gold plates have been examined by studying the passive ion transport response in the presence of Li+ and ClO4- ions and electrochemical impedance spectroscopy analysis. Our approach to form solid-supported biomimetic membranes via the potential-assisted strategy could be important for the development of new (bio-) sensors and membranes.}, language = {en} } @article{ZhangBramskiTutusetal.2019, author = {Zhang, Shuhao and Bramski, Julia and Tutus, Murat and Pietruszka, J{\"o}rg and B{\"o}ker, Alexander and Reinicke, Stefan}, title = {A Biocatalytically Active Membrane Obtained from Immobilization of 2-Deoxy-D-ribose-5-phosphate Aldolase on a Porous Support}, series = {ACS applied materials \& interfaces}, volume = {11}, journal = {ACS applied materials \& interfaces}, number = {37}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.9b12029}, pages = {34441 -- 34453}, year = {2019}, abstract = {Aldol reactions play an important role in organic synthesis, as they belong to the class of highly beneficial C-C-linking reactions. Aldol-type reactions can be efficiently and stereoselectively catalyzed by the enzyme 2-deoxy-D-ribose-5-phosphate aldolase (DERA) to gain key intermediates for pharmaceuticals such as atorvastatin. The immobilization of DERA would open the opportunity for a continuous operation mode which gives access to an efficient, large-scale production of respective organic intermediates. In this contribution, we synthesize and utilize DERA/polymer conjugates for the generation and fixation of a DERA bearing thin film on a polymeric membrane support. The conjugation strongly increases the tolerance of the enzyme toward the industrial relevant substrate acetaldehyde while UV-cross-linkable groups along the conjugated polymer chains provide the opportunity for covalent binding to the support. First, we provide a thorough characterization of the conjugates followed by immobilization tests on representative, nonporous cycloolefinic copolymer supports. Finally, immobilization on the target supports constituted of polyacrylonitrile (PAN) membranes is performed, and the resulting enzymatically active membranes are implemented in a simple membrane module setup for the first assessment of biocatalytic performance in the continuous operation mode using the combination hexanal/acetaldehyde as the substrate.}, language = {en} } @misc{DaiBoekerGlebe2019, author = {Dai, Xiaolin and B{\"o}ker, Alexander and Glebe, Ulrich}, title = {Broadening the scope of sortagging}, series = {RSC Advances}, volume = {9}, journal = {RSC Advances}, number = {9}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c8ra06705h}, pages = {4700 -- 4721}, year = {2019}, abstract = {Sortases are enzymes occurring in the cell wall of Gram-positive bacteria. Sortase A (SrtA), the best studied sortase class, plays a key role in anchoring surface proteins with the recognition sequence LPXTG covalently to oligoglycine units of the bacterial cell wall. This unique transpeptidase activity renders SrtA attractive for various purposes and motivated researchers to study multiple in vivo and in vitro ligations in the last decades. This ligation technique is known as sortase-mediated ligation (SML) or sortagging and developed to a frequently used method in basic research. The advantages are manifold: extremely high substrate specificity, simple access to substrates and enzyme, robust nature and easy handling of sortase A. In addition to the ligation of two proteins or peptides, early studies already included at least one artificial (peptide equipped) substrate into sortagging reactions - which demonstrates the versatility and broad applicability of SML. Thus, SML is not only a biology-related technique, but has found prominence as a major interdisciplinary research tool. In this review, we provide an overview about the use of sortase A in interdisciplinary research, mainly for protein modification, synthesis of protein-polymer conjugates and immobilization of proteins on surfaces.}, language = {en} } @article{ChengBoekerTsarkova2019, author = {Cheng, Xiao and B{\"o}ker, Alexander and Tsarkova, Larisa}, title = {Temperature-Controlled Solvent Vapor Annealing of Thin Block Copolymer Films}, series = {Polymers}, volume = {11}, journal = {Polymers}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym11081312}, pages = {18}, year = {2019}, abstract = {Solvent vapor annealing is as an effective and versatile alternative to thermal annealing to equilibrate and control the assembly of polymer chains in thin films. Here, we present scientific and practical aspects of the solvent vapor annealing method, including the discussion of such factors as non-equilibrium conformational states and chain dynamics in thin films in the presence of solvent. Homopolymer and block copolymer films have been used in model studies to evaluate the robustness and the reproducibility of the solvent vapor processing, as well as to assess polymer-solvent interactions under confinement. Advantages of utilizing a well-controlled solvent vapor environment, including practically interesting regimes of weakly saturated vapor leading to poorly swollen states, are discussed. Special focus is given to dual temperature control over the set-up instrumentation and to the potential of solvo-thermal annealing. The evaluated insights into annealing dynamics derived from the studies on block copolymer films can be applied to improve the processing of thin films of crystalline and conjugated polymers as well as polymer composite in confined geometries.}, language = {en} } @article{ReinickeFischerBramskietal.2019, author = {Reinicke, Stefan and Fischer, Thilo and Bramski, Julia and Pietruszka, J{\"o}rg and B{\"o}ker, Alexander}, title = {Biocatalytically active microgels by precipitation polymerization of N-isopropyl acrylamide in the presence of an enzyme}, series = {RSC Advances}, volume = {9}, journal = {RSC Advances}, number = {49}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c9ra04000e}, pages = {28377 -- 28386}, year = {2019}, abstract = {We present a novel protocol for the synthesis of enzymatically active microgels. The protocol is based on the precipitation polymerization of N-isopropylacrylamide (NIPAm) in the presence of an enzyme and a protein binding comonomer. A basic investigation on the influence of different reaction parameters such as monomer concentration and reaction temperature on the microgel size and size distribution is performed and immobilization yields are determined. Microgels exhibiting hydrodynamic diameters between 100 nm and 1 mu m and narrow size distribution could be synthesized while about 31-44\% of the enzyme present in the initial reaction mixture can be immobilized. Successful immobilization including a verification of enzymatic activity of the microgels is achieved for glucose oxidase (GOx) and 2-deoxy-d-ribose-5-phosphate aldolase (DERA). The thermoresponsive properties of the microgels are assessed and discussed in the light of activity evolution with temperature. The positive correlation of enzymatic activity with temperature for the GOx containing microgel originates from a direct interaction of the enzyme with the PNIPAm based polymer matrix whose magnitude is highly influenced by temperature.}, language = {en} } @article{SperlingReifarthGrobeetal.2019, author = {Sperling, Marcel and Reifarth, Martin and Grobe, Richard and B{\"o}ker, Alexander}, title = {Tailoring patches on particles: a modified microcontact printing routine using polymer-functionalised stamps}, series = {Chemical communications}, volume = {55}, journal = {Chemical communications}, number = {68}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c9cc03903a}, pages = {10104 -- 10107}, year = {2019}, abstract = {Herein, we report a modified microcontact printing (mu CP) routine suitable to introduce particle patches of a low molecular weight ink (LMWI) on porous SiO2 microparticles. Thereby, patch precision could be significantly improved by utilising stamps which have been surface-functionalised with grafted polymers. This improvement was evaluated by a profound software-assisted statistical analysis.}, language = {en} } @inproceedings{Boeker2019, author = {B{\"o}ker, Alexander}, title = {Programmable soft matter: From active membranes to self-replication}, series = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, volume = {257}, booktitle = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, pages = {1}, year = {2019}, language = {en} } @article{LopezManovaHoppeetal.2018, author = {Lopez, Carlos G. and Manova, Anna and Hoppe, Corinna and Dreja, Michael and Schmiedel, Peter and Job, Mareile and Richtering, Walter and B{\"o}ker, Alexander and Tsarkova, Larisa A.}, title = {Combined UV-Vis-absorbance and reflectance spectroscopy study of dye transfer kinetics in aqueous mixtures of surfactants}, series = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, volume = {550}, journal = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7757}, doi = {10.1016/j.colsurfa.2018.04.024}, pages = {74 -- 81}, year = {2018}, abstract = {We report an analytical approach to study the competitive processes of solubilisation in micelles and of adsorption onto hydrophobic surfaces of poorly soluble hydrophobic dyes. The method is demonstrated on model systems containing two sources of Disperse Red 60: a bulk powder and a donor red textile, with molecularly dissolved dye stabilised in an aqueous environment by mixed micelles of anionic and non-ionic surfactants. The process of dye transfer between a donor textile (red polyester), surfactant micelles and an acceptor textile (white polyamide) was quantified by a combination of colorimetric analyses. UV-Vis absorbance was used to follow the extraction of the dye and to evaluate the solubilisation capacity of the micellar solution. A calibration curve for textile reflectance versus the adsorbed dye was generated to quantify the mass of dye transferred onto the acceptor textile. A combination of both techniques allowed us to compare the amount of dye desorbed from the donor textile and adsorbed onto the acceptor textile as a function of time for systems undergoing exhaustion-solubilisation mechanisms and only solubilisation mechanism. Up to similar or equal to 10 min of the washing process, the released dye is predominantly solubilised in surfactant micelles. At later times, the adsorption of the dye on the hydrophobic surface is energetically favoured. The shift of the desorption equilibrium in the presence of the acceptor textile results in similar or equal to 30\% increase in the release of the dye. The reported methodology provides direct comparative analysis between the solubilisation capacity of amphiphilic stabilisers and the tendency of the dye to adsorb on solid substrates, important for designing novel concepts of disperse dye solubilisation and dye transfer inhibition during textile washing.}, language = {en} } @article{TanLiuSiemensmeyeretal.2018, author = {Tan, Li and Liu, Bing and Siemensmeyer, Konrad and Glebe, Ulrich and B{\"o}ker, Alexander}, title = {Synthesis of thermo-responsive nanocomposites of superparamagnetic cobalt nanoparticlesipoly(N-isopropylacrylamide)}, series = {Journal of colloid and interface science}, volume = {526}, journal = {Journal of colloid and interface science}, publisher = {Elsevier}, address = {San Diego}, issn = {0021-9797}, doi = {10.1016/j.jcis.2018.04.074}, pages = {124 -- 134}, year = {2018}, abstract = {Novel nanocomposites of superparamagnetic cobalt nanoparticles (Co NPs) and poly(N-isopropylacrylamide) (PNIPAM) were fabricated through surface-initiated atom-transfer radical polymerization (SI-ATRP). We firstly synthesized a functional ATRP initiator, containing an amine (as anchoring group) and a 2-bromopropionate group (SI-ATRP initiator). Oleic acid- and trioctylphosphine oxide-coated Co NPs were then modified with the initiator via ligand exchange. The process is facile and rapid for efficient surface functionalization and afterwards the Co NPs can be dispersed into polar solvent DMF without aggregation. Transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and dynamic light scattering measurements confirmed the success of ligand exchange. The following polymerization of NIPAM was conducted on the surface of Co NPs. Temperature-dependent dynamic light scattering study showed the responsive behavior of PNIPAM-coated Co NPs. The combination of superparamagnetic and thermo-responsive properties in these hybrid nanoparticles is promising for future applications e.g. in biomedicine. (C) 2018 Elsevier Inc. All rights reserved.}, language = {en} } @article{TanLiuSiemensmeyeretal.2018, author = {Tan, Li and Liu, Bing and Siemensmeyer, Konrad and Glebe, Ulrich and B{\"o}ker, Alexander}, title = {Synthesis of Polystyrene-Coated Superparamagnetic and Ferromagnetic Cobalt Nanoparticles}, series = {Polymers}, volume = {10}, journal = {Polymers}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym10101053}, pages = {18}, year = {2018}, abstract = {Polystyrene-coated cobalt nanoparticles (NPs) were synthesized through a dual-stage thermolysis of cobalt carbonyl (Co-2(CO)(8)). The amine end-functionalized polystyrene surfactants with varying molecular weight were prepared via atom-transfer radical polymerization technique. By changing the concentration of these polymeric surfactants, Co NPs with different size, size distribution, and magnetic properties were obtained. Transmission electron microscopy characterization showed that the size of Co NPs stabilized with lower molecular weight polystyrene surfactants (M-n = 2300 g/mol) varied from 12-22 nm, while the size of Co NPs coated with polystyrene of middle (M-n = 4500 g/mol) and higher molecular weight (M-n = 10,500 g/mol) showed little change around 20 nm. Magnetic measurements revealed that the small cobalt particles were superparamagnetic, while larger particles were ferromagnetic and self-assembled into 1-D chain structures. Thermogravimetric analysis revealed that the grafting density of polystyrene with lower molecular weight is high. To the best of our knowledge, this is the first study to obtain both superparamagnetic and ferromagnetic Co NPs by changing the molecular weight and concentration of polystyrene through the dual-stage decomposition method.}, language = {en} } @article{MehrGrigorievPuretskiyetal.2019, author = {Mehr, Fatemeh Naderi and Grigoriev, Dmitry and Puretskiy, Nikolay and B{\"o}ker, Alexander}, title = {Mono-patchy zwitterionic microcolloids as building blocks for pH-controlled self-assembly}, series = {Soft matter}, volume = {15}, journal = {Soft matter}, number = {11}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c8sm02151a}, pages = {2430 -- 2438}, year = {2019}, abstract = {A directional molecular interaction between microcolloids can be achieved through pre-defined sites on their surface, patches, which might make them follow each other in a controlled way and assemble into target structures of more complexity. In this article, we report the successful generation and characterization of mono-patchy melamine-formaldehyde microparticles with oppositely charged patches made of poly(methyl vinyl ether-alt-maleic acid) or polyethyleneimine via microcontact printing. The study of their self-aggregation behavior in solution shows that by change of pH, particle dimers are formed via attractive electrostatic force between the patchy and non-patchy surface of the particles, which reaches its optimum at a specific pH.}, language = {en} } @article{JohnZimmermannBoeker2018, author = {John, Daniela and Zimmermann, Marc and B{\"o}ker, Alexander}, title = {Generation of 3-dimensional multi-patches on silica particles via printing with wrinkled stamps}, series = {Soft matter}, volume = {14}, journal = {Soft matter}, number = {16}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c8sm00224j}, pages = {3057 -- 3062}, year = {2018}, abstract = {A simple route towards patchy particles with anisotropic patches with respect to a different functionality and directionality is presented. This method is based on microcontact printing of positively charged polyethylenimine (PEI) on silica particles using wrinkled stamps. Due to the wrinkled surface, the number of patches on the particles as well as the distance between two patches can be controlled.}, language = {en} } @article{ReinickeReesEspeeletal.2017, author = {Reinicke, Stefan and Rees, Huw C. and Espeel, Pieter and Vanparijs, Nane and Bisterfeld, Carolin and Dick, Markus and Rosencrantz, Ruben R. and Brezesinski, Gerald and de Geest, Bruno G. and Du Prez, Filip E. and Pietruszka, J{\"o}rg and B{\"o}ker, Alexander}, title = {Immobilization of 2-Deoxy-D-ribose-5-phosphate Aldolase in Polymeric Thin Films via the Langmuir-Schaefer Technique}, series = {ACS applied materials \& interfaces}, volume = {9}, journal = {ACS applied materials \& interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.6b13632}, pages = {8317 -- 8326}, year = {2017}, abstract = {A synthetic protocol for the fabrication of ultrathin polymeric films containing the enzyme 2-deoxy-D-ribose-5-phosphate aldolase from Escherichia coli (DERA(EC)) is presented. Ultrathin enzymatically active films are useful for applications in which only small quantities of active material are needed and at the same time quick response and contact times without diffusion limitation are wanted. We show how DERA as an exemplary enzyme can be immobilized in a thin polymer layer at the air-water interface and transferred to a suitable support by the Langmuir-Schaefer technique under full conservation of enzymatic activity. The polymer in use is a poly(N-isopropylacrylamide-co-N-2-thiolactone acrylamide) (P(NIPAAm-co-TlaAm)) statistical copolymer in which the thiolactone units serve a multitude of purposes including hydrophobization of the polymer, covalent binding of the enzyme and the support and finally cross-linking of the polymer matrix. The application of this type of polymer keeps the whole approach simple as additional cocomponents such as cross-linkers are avoided.}, language = {en} } @article{ZhangBisterfeldBramskietal.2017, author = {Zhang, Shuhao and Bisterfeld, Carolin and Bramski, Julia and Vanparijs, Nane and De Geest, Bruno G. and Pietruszka, J{\"o}rg and B{\"o}ker, Alexander and Reinicke, Stefan}, title = {Biocatalytically Active Thin Films via Self-Assembly of 2-Deoxy-D-ribose-5-phosphate Aldolase-Poly(N-isopropylacrylamide) Conjugates}, series = {Bioconjugate chemistry}, volume = {29}, journal = {Bioconjugate chemistry}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {1043-1802}, doi = {10.1021/acs.bioconjchem.7b00645}, pages = {104 -- 116}, year = {2017}, abstract = {2-Deoxy-D-ribose-5-phosphate aldolase (DERA) is a biocatalyst that is capable of converting acetaldehyde and a second aldehyde as acceptor into enantiomerically pure mono- and diyhydroxyaldehydes, which are important structural motifs in a number of pharmaceutically active compounds. However, substrate as well as product inhibition requires a more-sophisticated process design for the synthesis of these motifs. One way to do so is to the couple aldehyde conversion with transport processes, which, in turn, would require an immobilization of the enzyme within a thin film that can be deposited on a membrane support. Consequently, we developed a fabrication process for such films that is based on the formation of DERA-poly(N-isopropylacrylamide) conjugates that are subsequently allowed to self-assemble at an air-water interface to yield the respective film. In this contribution, we discuss the conjugation conditions, investigate the interfacial properties of the conjugates, and, finally, demonstrate a successful film formation under the preservation of enzymatic activity.}, language = {en} } @article{LiebeckHidalgoRothetal.2017, author = {Liebeck, Bernd Michael and Hidalgo, Natalia and Roth, Georg and Popescu, Crisan and B{\"o}ker, Alexander}, title = {Synthesis and characterization of Methyl Cellulose/Keratin Hydrolysate Composite Membranes}, series = {Polymers / Molecular Diversity Preservation International}, volume = {9}, journal = {Polymers / Molecular Diversity Preservation International}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym9030091}, pages = {13}, year = {2017}, abstract = {It is known that aqueous keratin hydrolysate solutions can be produced from feathers using superheated water as solvent. This method is optimized in this study by varying the time and temperature of the heat treatment in order to obtain a high solute content in the solution. With the dissolved polypeptides, films are produced using methyl cellulose as supporting material. Thereby, novel composite membranes are produced from bio-waste. It is expected that these materials exhibit both protein and polysaccharide properties. The influence of the embedded keratin hydrolysates on the methyl cellulose structure is investigated using Fourier transform infrared spectroscopy (FTIR) and wide angle X-ray diffraction (WAXD). Adsorption peaks of both components are present in the spectra of the membranes, while the X-ray analysis shows that the polypeptides are incorporated into the semi-crystalline methyl cellulose structure. This behavior significantly influences the mechanical properties of the composite films as is shown by tensile tests. Since further processing steps, e.g., crosslinking, may involve a heat treatment, thermogravimetric analysis (TGA) is applied to obtain information on the thermal stability of the composite materials.}, language = {en} } @article{GarakaniRichterBoeker2017, author = {Garakani, Tayebeh Mirzaei and Richter, Marina Juliane and B{\"o}ker, Alexander}, title = {Controlling the bio-inspired synthesis of silica}, series = {Journal of colloid and interface science}, volume = {488}, journal = {Journal of colloid and interface science}, publisher = {Elsevier}, address = {San Diego}, issn = {0021-9797}, doi = {10.1016/j.jcis.2016.10.069}, pages = {322 -- 334}, year = {2017}, abstract = {The influence of different parameters on the silicification procedure using lysozyme is reported. When polyethoxysiloxane (PEOS), an internally crosslinked silica reservoir, is used, regular structures with a narrow size distribution could be obtained only via introducing the silica precursor in two steps including initial dropping and subsequent addition of residual oil phase in one portion. We found that mixing sequence of mineralizing agents in the presence of a positively charged surfactant plays a key role in terms of silica precipitation when tetraethoxyorthosilicate (TEOS) is the oil phase. In contrast, well mineralized crumpled features with high specific surface area could be synthesized in the presence of PEOS as a silica precursor polymer, regardless of mixing sequence. Moreover, introducing sodium dodecyl sulfate (SDS) as a negatively charged surfactant resulted in regular silica sphere formation only in combination with hexylene glycol (MPD) as a specific co-solvent. Finally, it is demonstrated that by inclusion of different nanoparticles even more sophisticated hybrid materials can be generated.}, language = {en} } @article{ZimmermannJohnGrigorievetal.2018, author = {Zimmermann, Marc and John, Daniela and Grigoriev, Dmitry and Puretskiy, Nikolay and B{\"o}ker, Alexander}, title = {From 2D to 3D patches on multifunctional particles}, series = {Soft matter}, volume = {14}, journal = {Soft matter}, number = {12}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c8sm00163d}, pages = {2301 -- 2309}, year = {2018}, abstract = {A straightforward approach for the precise multifunctional surface modification of particles with three-dimensional patches using microcontact printing is presented. By comparison to previous works it was possible to not only control the diameter, but also to finely tune the thickness of the deposited layer, opening up the way for three-dimensional structures and orthogonal multifunctionality. The use of PEI as polymeric ink, PDMS stamps for microcontact printing on silica particles and the influence of different solvents during particle release on the creation of functional particles with three-dimensional patches are described. Finally, by introducing fluorescent properties by incorporation of quantum dots into patches and by particle self-assembly via avidin-biotin coupling, the versatility of this novel modification method is demonstrated.}, language = {en} } @misc{NguyenRichertParketal.2017, author = {Nguyen, Vu Hoa and Richert, S. and Park, Hyunji and B{\"o}ker, Alexander and Schnakenberg, Uwe}, title = {Single interdigital transducer as surface acoustic wave impedance sensor}, series = {Biosensors}, volume = {27}, journal = {Biosensors}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-0173}, doi = {10.1016/j.protcy.2017.04.032}, pages = {70 -- 71}, year = {2017}, abstract = {Surface acoustic wave (SAW) devices are well-known for gravimetric sensor applications. In biosensing applications, chemical-and biochemically evoked adsorption processes at surfaces are detected in liquid environments using delay-line or resonator sensor configurations, preferably in combination with appropriate microfluidic devices. In this paper, a novel SAW-based impedance sensor type is introduced which uses only one interdigital electrode transducer (IDT) simultaneously as SAW generator and sensor element. It is shown that the amplitude of the reflected S-11 signal directly depends on the input impedance of the SAW device. The input impedance is strongly influenced by mass adsorption which causes a characteristic and measurable impedance mismatch.}, language = {en} } @article{KathreinBaiNunnsetal.2016, author = {Kathrein, Christine C. and Bai, Wubin and Nunns, Adam and Gwyther, Jessica and Manners, Ian and B{\"o}ker, Alexander and Tsarkova, Larisa and Ross, Caroline A.}, title = {Electric field manipulated nanopatterns in thin films of metalorganic 3-miktoarm star terpolymers}, series = {Soft matter}, volume = {12}, journal = {Soft matter}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c6sm00451b}, pages = {4866 -- 4874}, year = {2016}, abstract = {We report the effect of electric field on the morphological transitions and ordering behavior of polyferrocenylethylmethylsilane block (PFEMS)-containing copolymers. By analyzing structures in solvent-annealed films of metalorganic sphere-and cylinder-forming diblock copolymers, as well as of 3-miktoarm polyisoprene-arm-polystyrene-arm-PFEMS (3 mu-ISF) terpolymers, we decouple two types of responses to the electric field: morphological transformations as a result of an increase in the volume fraction of the PFEMS block by oxidation of the ferrocenyl groups, and the orientation of the dielectric interfaces of microdomains parallel to the electric field vector. In the case of 3m-ISF, the former effect dominates at high electric field strengths which results in an unexpected cylinder-to-sphere transition, leading to a well-ordered hexagonal dot pattern. Our results demonstrate multiple tunability of ordered microdomain morphologies, suggesting future applications in nanofabrication and surface patterning.}, language = {en} } @article{KathreinPesterRuppeletal.2016, author = {Kathrein, Christine C. and Pester, Christian and Ruppel, Markus and Jung, Maike and Zimmermann, Marc and B{\"o}ker, Alexander}, title = {Reorientation mechanisms of block copolymer/CdSe quantum dot composites under application of an electric field}, series = {Soft matter}, volume = {12}, journal = {Soft matter}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c6sm01073c}, pages = {8417 -- 8424}, year = {2016}, abstract = {Time- and temperature-resolved in situ birefringence measurements were applied to analyze the effect of nanoparticles on the electric field-induced alignment of a microphase separated solution of poly(styrene)-block-poly(isoprene) in toluene. Through the incorporation of isoprene-confined CdSe quantum dots the reorientation behavior is altered. Particle loading lowers the order-disorder transition temperature, and increases the defect density, favoring nucleation and growth as an alignment mechanism over rotation of grains. The temperature dependent alteration in the reorientation mechanism is analyzed via a combination of birefringence and synchrotron SAXS. The detailed understanding of the effect of nanoparticles on the reorientation mechanism is an important prerequisite for optimization of electricfield-induced alignment of block copolymer/nanoparticle composites where the block copolymer guides the nanoparticle self-assembly into anisotropic structures.}, language = {en} } @article{DoeringGrigorievTapioetal.2022, author = {Doering, Ulrike and Grigoriev, Dmitry and Tapio, Kosti and Bald, Ilko and B{\"o}ker, Alexander}, title = {Synthesis of nanostructured protein-mineral-microcapsules by sonication}, series = {Soft matter}, volume = {18}, journal = {Soft matter}, number = {13}, publisher = {Royal Society of Chemistry}, address = {London}, issn = {1744-6848}, doi = {10.1039/d1sm01638e}, pages = {2558 -- 2568}, year = {2022}, abstract = {We propose a simple and eco-friendly method for the formation of composite protein-mineral-microcapsules induced by ultrasound treatment. Protein- and nanoparticle-stabilized oil-in-water (O/W) emulsions loaded with different oils are prepared using high-intensity ultrasound. The formation of thin composite mineral proteinaceous shells is realized with various types of nanoparticles, which are pre-modified with Bovine Serum Albumin (BSA) and subsequently characterized by EDX, TGA, zeta potential measurements and Raman spectroscopy. Cryo-SEM and EDX mapping visualizations show the homogeneous distribution of the densely packed nanoparticles in the capsule shell. In contrast to the results reported in our previous paper,(1) the shell of those nanostructured composite microcapsules is not cross-linked by the intermolecular disulfide bonds between BSA molecules. Instead, a Pickering-Emulsion formation takes place because of the amphiphilicity-driven spontaneous attachment of the BSA-modified nanoparticles at the oil/water interface. Using colloidal particles for the formation of the shell of the microcapsules, in our case silica, hydroxyapatite and calcium carbonate nanoparticles, is promising for the creation of new functional materials. The nanoparticulate building blocks of the composite shell with different chemical, physical or morphological properties can contribute to additional, sometimes even multiple, features of the resulting capsules. Microcapsules with shells of densely packed nanoparticles could find interesting applications in pharmaceutical science, cosmetics or in food technology.}, language = {en} } @article{ReifarthBekirBapolisietal.2022, author = {Reifarth, Martin and Bekir, Marek and Bapolisi, Alain M. and Titov, Evgenii and Nusshardt, Fabian and Nowaczyk, Julius and Grigoriev, Dmitry and Sharma, Anjali and Saalfrank, Peter and Santer, Svetlana and Hartlieb, Matthias and B{\"o}ker, Alexander}, title = {A dual pH- and light-responsive spiropyrane-based surfactant}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {61}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {21}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.202114687}, pages = {10}, year = {2022}, abstract = {A cationic surfactant containing a spiropyrane unit is prepared exhibiting a dual-responsive adjustability of its surface-active characteristics. The switching mechanism of the system relies on the reversible conversion of the non-ionic spiropyrane (SP) to a zwitterionic merocyanine (MC) and can be controlled by adjusting the pH value and via light, resulting in a pH-dependent photoactivity: While the compound possesses a pronounced difference in surface activity between both forms under acidic conditions, this behavior is suppressed at a neutral pH level. The underlying switching processes are investigated in detail, and a thermodynamic explanation based on a combination of theoretical and experimental results is provided. This complex stimuli-responsive behavior enables remote-control of colloidal systems. To demonstrate its applicability, the surfactant is utilized for the pH-dependent manipulation of oil-in-water emulsions.}, language = {en} } @misc{WangSperlingReifarthetal.2020, author = {Wang, Xuepu and Sperling, Marcel and Reifarth, Martin and B{\"o}ker, Alexander}, title = {Shaping metallic nanolattices}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {11}, issn = {1866-8372}, doi = {10.25932/publishup-51434}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-514341}, pages = {10}, year = {2020}, abstract = {A method for the fabrication of well-defined metallic nanostructures is presented here in a simple and straightforward fashion. As an alternative to lithographic techniques, this routine employs microcontact printing utilizing wrinkled stamps, which are prepared from polydimethylsiloxane (PDMS), and includes the formation of hydrophobic stripe patterns on a substrate via the transfer of oligomeric PDMS. Subsequent backfilling of the interspaces between these stripes with a hydroxyl-functional poly(2-vinyl pyridine) then provides the basic pattern for the deposition of citrate-stabilized gold nanoparticles promoted by electrostatic interaction. The resulting metallic nanostripes can be further customized by peeling off particles in a second microcontact printing step, which employs poly(ethylene imine) surface-decorated wrinkled stamps, to form nanolattices. Due to the independent adjustability of the period dimensions of the wrinkled stamps and stamp orientation with respect to the substrate, particle arrays on the (sub)micro-scale with various kinds of geometries are accessible in a straightforward fashion. This work provides an alternative, cost-effective, and scalable surface-patterning technique to fabricate nanolattice structures applicable to multiple types of functional nanoparticles. Being a top-down method, this process could be readily implemented into, e.g., the fabrication of optical and sensing devices on a large scale.}, language = {en} } @misc{ZimmermannStompsSchulteOsseilietal.2020, author = {Zimmermann, Marc and Stomps, Benjamin Ren{\´e} Harald and Schulte-Osseili, Christine and Grigoriev, Dmitry and Ewen, Dirk and Morgan, Andrew and B{\"o}ker, Alexander}, title = {Organic dye anchor peptide conjugates as an advanced coloring agent for polypropylene yarn}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1-2}, issn = {1866-8372}, doi = {10.25932/publishup-54891}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548913}, pages = {14}, year = {2020}, abstract = {Polypropylene as one of the world's top commodity polymers is also widely used in the textile industry. However, its non-polar nature and partially crystalline structure significantly complicate the process of industrial coloring of polypropylene. Currently, textiles made of polypropylene or with a significant proportion of polypropylene are dyed under quite harsh conditions, including the use of high pressures and temperatures, which makes this process energy intensive. This research presents a three-step synthesis of coloring agents, capable of adhering onto synthetic polypropylene yarns without harsh energy-consuming conditions. This is possible by encapsulation of organic pigments using trimethoxyphenylsilane, introduction of surface double bonds via modification of the silica shell with trimethoxysilylpropylmethacrylate and final attachment of highly adhesive anchor peptides using thiol-ene chemistry. We demonstrate the applicability of this approach by dyeing polypropylene yarns in a simple process under ambient conditions after giving a step-by-step guide for the synthesis of these new dyeing agents. Finally, the successful dyeing of the yarns is visualized, and its practicability is discussed.}, language = {en} } @article{ZimmermannStompsSchulteOsseilietal.2020, author = {Zimmermann, Marc and Stomps, Benjamin Ren{\´e} Harald and Schulte-Osseili, Christine and Grigoriev, Dmitry and Ewen, Dirk and Morgan, Andrew and B{\"o}ker, Alexander}, title = {Organic dye anchor peptide conjugates as an advanced coloring agent for polypropylene yarn}, series = {Textile Research Journal}, volume = {91}, journal = {Textile Research Journal}, number = {1-2}, publisher = {Sage Publ.}, address = {London}, issn = {0040-5175}, doi = {10.1177/0040517520932231}, pages = {28 -- 39}, year = {2020}, abstract = {Polypropylene as one of the world's top commodity polymers is also widely used in the textile industry. However, its non-polar nature and partially crystalline structure significantly complicate the process of industrial coloring of polypropylene. Currently, textiles made of polypropylene or with a significant proportion of polypropylene are dyed under quite harsh conditions, including the use of high pressures and temperatures, which makes this process energy intensive. This research presents a three-step synthesis of coloring agents, capable of adhering onto synthetic polypropylene yarns without harsh energy-consuming conditions. This is possible by encapsulation of organic pigments using trimethoxyphenylsilane, introduction of surface double bonds via modification of the silica shell with trimethoxysilylpropylmethacrylate and final attachment of highly adhesive anchor peptides using thiol-ene chemistry. We demonstrate the applicability of this approach by dyeing polypropylene yarns in a simple process under ambient conditions after giving a step-by-step guide for the synthesis of these new dyeing agents. Finally, the successful dyeing of the yarns is visualized, and its practicability is discussed.}, language = {en} } @article{MergelWuennemannSimonetal.2015, author = {Mergel, Olga and Wuennemann, Patrick and Simon, Ulrich and B{\"o}ker, Alexander and Plamper, Felix A.}, title = {Microgel Size Modulation by Electrochemical Switching}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {27}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {21}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.5b02740}, pages = {7306 -- 7312}, year = {2015}, abstract = {In this work we present the first e-microgel, whose size can be adjusted by application of an electrochemical potential, as seen by dynamic light scattering (3D-DLS in dependence of equilibrium potential) and scanning force microscopy (SFM). Hereby, polyelectrolyte microgels with attracted electroactive counterions provide an effective platform for the manipulation of the microgel size by electrochemical means. The reversible switching of guest molecules, namely, hexacyanoferrates, between oxidized ferricyanide [Fe(CN)(6)](3-) and reduced ferrocyanide [Fe(CN)(6)](4-), influences the cationic host microgel, poly(N-isopropylacrylamide-co-methacrylamidopropyltrimethylammonium chloride) P(NIPAM-co-MAPTAC), and hence the swelling properties of the microgel. The combination of thermo- and redox-responsiveness in one particle leads to a novel type of multistimuli responsive material. In addition, the use of hydrodynamic voltammetry detects directly the preferred uptake of ferricyanide and enables the determination of the nominal charge ratio (ncr) between microgel and entrapped counterions at different states of switching. Further, electrochemical impedance spectroscopy allows a more detailed mechanistic insight into the microgel modulation.}, language = {en} } @misc{WuGlebeBoeker2015, author = {Wu, Lei and Glebe, Ulrich and B{\"o}ker, Alexander}, title = {Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles}, series = {Polymer Chemistry}, volume = {6}, journal = {Polymer Chemistry}, number = {29}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c5py00525f}, pages = {5143 -- 5184}, year = {2015}, abstract = {In recent years, core/shell nanohybrids containing a nanoparticle core and a distinct surrounding shell of polymer brushes have received extensive attention in nanoelectronics, nanophotonics, catalysis, nanopatterning, drug delivery, biosensing, and many others. From the large variety of existing polymerization methods on the one hand and strategies for grafting onto nanoparticle surfaces on the other hand, the combination of grafting-from with controlled radical polymerization (CRP) techniques has turned out to be the best suited for synthesizing these well-defined core/shell nanohybrids and is known as surface-initiated CRP. Most common among these are surface-initiated atom transfer radical polymerization (ATRP), surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, and surface-initiated nitroxide-mediated polymerization (NMP). This review highlights the state of the art of growing polymers from nanoparticles using surface-initiated CRP techniques. We focus on mechanistic aspects, synthetic procedures, and the formation of complex architectures as well as novel properties. From the vast number of examples of nanoparticle/polymer hybrids formed by surface-initiated CRP techniques, we present nanohybrid formation from the particularly important and most studied silica nanoparticles, gold nanocrystals, and proteins which can be regarded as bionanoparticles.}, language = {en} } @article{HiltlBoeker2016, author = {Hiltl, Stephanie and B{\"o}ker, Alexander}, title = {Wetting Phenomena on (Gradient) Wrinkle Substrates}, series = {Langmuir}, volume = {32}, journal = {Langmuir}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.6b02364}, pages = {8882 -- 8888}, year = {2016}, abstract = {We characterize the wetting behavior of nano structured wrinkle and gradient wrinkle substrates. Different contact angles on both sides of a water droplet after deposition on a gradient sample induce the self-propelled motion of the liquid toward smaller wrinkle dimensions. The droplet motion is self-limited by the contact angles balancing out. Because of the correlation between droplet motion and contact angles, we investigate the wetting behavior of wrinkle substrates with constant dimensions (wavelengths of 400-1200 nm). Contact angles of water droplets on those substrates increase with increasing dimensions of the underlying substrate. The results are independent of the two measurement directions, parallel and perpendicular to the longitudinal axis of the nanostructure. The presented findings may be considered for designing microfluidic or related devices and initiate ideas for the development of further wrinkle applications.}, language = {en} } @article{RuebsamStompsBoekeretal.2017, author = {R{\"u}bsam, Kristin and Stomps, Benjamin Ren{\´e} Harald and B{\"o}ker, Alexander and Jakob, Felix and Schwaneberg, Ulrich}, title = {Anchor peptides: A green and versatile method for polypropylene functionalization}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {116}, journal = {Polymer : the international journal for the science and technology of polymers}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-3861}, doi = {10.1016/j.polymer.2017.03.070}, pages = {124 -- 132}, year = {2017}, language = {en} } @article{WuGlebeBoeker2016, author = {Wu, Lei and Glebe, Ulrich and B{\"o}ker, Alexander}, title = {Synthesis of Hybrid Silica Nanoparticles Densely Grafted with Thermo and pH Dual-Responsive Brushes via Surface-Initiated ATRP}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {49}, journal = {Macromolecules : a publication of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.6b01792}, pages = {9586 -- 9596}, year = {2016}, language = {en} } @article{CharanGlebeAnandetal.2017, author = {Charan, Himanshu and Glebe, Ulrich and Anand, Deepak and Kinzel, Julia and Zhu, Leilei and Bocola, Marco and Garakani, Tayebeh Mirzaei and Schwaneberg, Ulrich and B{\"o}ker, Alexander}, title = {Nano-thin walled micro-compartments from transmembrane protein-polymer conjugates}, series = {Soft matter}, volume = {13}, journal = {Soft matter}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c6sm02520j}, pages = {2866 -- 2875}, year = {2017}, abstract = {The high interfacial activity of protein-polymer conjugates has inspired their use as stabilizers for Pickering emulsions, resulting in many interesting applications such as synthesis of templated micro-compartments and protocells or vehicles for drug and gene delivery. In this study we report, for the first time, the stabilization of Pickering emulsions with conjugates of a genetically modified transmembrane protein, ferric hydroxamate uptake protein component A (FhuA). The lysine residues of FhuA with open pore (FhuA Delta CVFtev) were modified to attach an initiator and consequently controlled radical polymerization (CRP) carried out via the grafting-from technique. The resulting conjugates of FhuA Delta CVFtev with poly(N-isopropylacrylamide) (PNIPAAm) and poly((2-dimethylamino) ethyl methacrylate) (PDMAEMA), the so-called building blocks based on transmembrane proteins (BBTP), have been shown to engender larger structures. The properties such as pH-responsivity, temperature-responsivity and interfacial activity of the BBTP were analyzed using UV-Vis spectrophotometry and pendant drop tensiometry. The BBTP were then utilized for the synthesis of highly stable Pickering emulsions, which could remain non-coalesced for well over a month. A new UV-crosslinkable monomer was synthesized and copolymerized with NIPAAm from the protein. The emulsion droplets, upon crosslinking of polymer chains, yielded micro-compartments. Fluorescence microscopy proved that these compartments are of micrometer scale, while cryo-scanning electron microscopy and scanning force microscopy analysis yielded a thickness in the range of 11.1 +/- 0.6 to 38.0 +/- 18.2 nm for the stabilizing layer of the conjugates. Such micro-compartments would prove to be beneficial in drug delivery applications, owing to the possibility of using the channel of the transmembrane protein as a gate and the smart polymer chains as trigger switches to tune the behavior of the capsules.}, language = {en} } @article{WuennemannNoyongKreuelsetal.2016, author = {Wuennemann, Patrick and Noyong, Michael and Kreuels, Klaus and Bruex, Roland and Gordiichuk, Pavlo and van Rijn, Patrick and Plamper, Felix A. and Simon, Ulrich and B{\"o}ker, Alexander}, title = {Microstructured Hydrogel Templates for the Formation of Conductive Gold Nanowire Arrays}, series = {Macromolecular rapid communications}, volume = {37}, journal = {Macromolecular rapid communications}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201600287}, pages = {1446 -- 1452}, year = {2016}, abstract = {Microstructured hydrogel allows for a new template-guided method to obtain conductive nanowire arrays on a large scale. To generate the template, an imprinting process is used in order to synthesize the hydrogel directly into the grooves of wrinkled polydimethylsiloxane (PDMS). The resulting poly(N-vinylimidazole)-based hydrogel is defined by the PDMS stamp in pattern and size. Subsequently, tetrachloroaurate(III) ions from aqueous solution are coordinated within the humps of the N-vinylimidazole-containing polymer template and reduced by air plasma. After reduction and development of the gold, to achieve conductive wires, the extension perpendicular to the long axis (width) of the gold strings is considerably reduced compared to the dimension of the parental hydrogel wrinkles (from approximate to 1 mu m down to 200-300 nm). At the same time, the wire-to-wire distance and the overall length of the wires is preserved. The PDMS templates and hydrogel structures are analyzed with scanning force microscopy (SFM) and the gold structures via scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. The conductivity measurements of the gold nanowires are performed in situ in the SEM, showing highly conductive gold leads. Hence, this method can be regarded as a facile nonlithographic top-down approach from micrometer-sized structures to nanometer-sized features.}, language = {en} } @article{WagnerOdedShenharetal.2017, author = {Wagner, Tom and Oded, Meirav and Shenhar, Roy and B{\"o}ker, Alexander}, title = {Two-dimensionally ordered AuNP array formation via microcontact printing on lamellar diblock copolymer films}, series = {Polymers for advanced technologies}, volume = {28}, journal = {Polymers for advanced technologies}, publisher = {Wiley}, address = {Hoboken}, issn = {1042-7147}, doi = {10.1002/pat.3853}, pages = {623 -- 628}, year = {2017}, abstract = {The construction of nano-sized, two-dimensionally ordered nanoparticle (NP) superstructures is important for various advanced applications such as photonics, sensing, catalysis, or nano-circuitry. Currently, such structures are fabricated using the templated organization approach, in which the templates are mainly created by photo-lithography or laser-lithography and other invasive top-down etching procedures. In this work, we present an alternative bottom-up preparation method for the controlled deposition of NPs into hierarchical structures. Lamellar polystyrene-block-poly(2-vinylpyridinium) thin films featuring alternating stripes of neutral PS and positively charged P2VP domains serve as templates, allowing for the selective adsorption of negatively charged gold NPs. Dense NP assembly is achieved by a simple immersion process, whereas two-dimensionally ordered arrays of NPs are realized by microcontact printing (mu CP), utilizing periodic polydimethylsiloxane wrinkle grooves loaded with gold NPs. This approach enables the facile construction of hierarchical NP arrays with variable geometries. Copyright (C) 2016 John Wiley \& Sons, Ltd.}, language = {en} } @article{TebaldiCharanMavliutovaetal.2017, author = {Tebaldi, Marli Luiza and Charan, Himanshu and Mavliutova, Liliia and B{\"o}ker, Alexander and Glebe, Ulrich}, title = {Dual-Stimuli Sensitive Hybrid Materials: Ferritin-PDMAEMA by Grafting-From Polymerization}, series = {Macromolecular chemistry and physics}, volume = {218}, journal = {Macromolecular chemistry and physics}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201600529}, pages = {6}, year = {2017}, abstract = {The combination of stimuli-responsive polymers and proteins that can transport drugs is a promising approach for drug delivery. The formation of ferritin-poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) conjugates by atom-transfer radical polymerization from the protein macroinitiator is described. PDMAEMA is a dual-stimuli-responsive polymer and the thermo- and pH-responsive properties of the resulting conjugates are studied in detail with dynamic light scattering (DLS). Additionally, it is demonstrated that the lower critical solution temperature (LCST) of the protein-polymer conjugates can be further adjusted by the ionic strength of the solution. The conjugates are also characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), matrix-assisted laser desorption ionization-time of flight (MALDI-ToF) mass spectrometry, and NMR spectroscopy. The obtained MALDI-ToF mass spectra are exceptional for protein-polymer conjugates and have not been so often reported.}, language = {en} } @article{RosencrantzTangSchulteOsseilietal.2019, author = {Rosencrantz, Sophia and Tang, Jo Sing Julia and Schulte-Osseili, Christine and B{\"o}ker, Alexander and Rosencrantz, Ruben R.}, title = {Glycopolymers by RAFT Polymerization as Functional Surfaces for Galectin-3}, series = {Macromolecular chemistry and physics}, volume = {220}, journal = {Macromolecular chemistry and physics}, number = {20}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201900293}, pages = {7}, year = {2019}, abstract = {Glycan-protein interactions are essential biological processes with many disease-related modulations and variations. One of the key proteins involved in tumor progression and metastasis is galectin-3 (Gal-3). A lot of effort is put into the development of Gal-3 inhibitors as new therapeutic agents. The avidity of glycan-protein interactions is strongly enhanced by multivalent ligand presentation. Multivalent presentation of glycans can be accomplished by utilizing glycopolymers, which are polymers with pendent glycan groups. For the production of glycopolymers, glycomonomers are synthesized by a regioselective, microwave-assisted approach starting from lactose. The resulting methacrylamide derivatives are polymerized by RAFT and immobilized on gold surfaces using the trithiocarbonate group of the chain transfer agent. Surface plasmon resonance spectroscopy enables the label free kinetic characterization of Gal-3 binding to these multivalent glycopolymers. The measurements indicate oligomerization of Gal-3 upon exposure to multivalent environments and reveal strong specific interaction with the immobilized polymers.}, language = {en} } @article{RosencrantzVuHoaNguyenParketal.2016, author = {Rosencrantz, Ruben R. and Vu Hoa Nguyen, and Park, Hyunji and Schulte, Christine and B{\"o}ker, Alexander and Schnakenberg, Uwe and Elling, Lothar}, title = {Lectin binding studies on a glycopolymer brush flow-through biosensor by localized surface plasmon resonance}, series = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry and Analusis}, volume = {408}, journal = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry and Analusis}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-016-9667-9}, pages = {5633 -- 5640}, year = {2016}, abstract = {A localized surface plasmon resonance biosensor in a flow-through configuration was applied for investigating kinetics of lectin binding to surface-grafted glycopolymer brushes. Polycarbonate filter membranes with pore sizes of 400 nm were coated with a 114-nm thick gold layer and used as substrate for surface-initiated atom-transfer radical polymerization of a glycomonomer. These grafted from glycopolymer brushes were further modified with two subsequent enzymatic reactions on the surface to yield an immobilized trisaccharide presenting brush. Specific binding of lectins including Clostridium difficile toxin A receptor domain to the glycopolymer brush surface could be investigated in a microfluidic setup with flow-through of the analytes and transmission surface plasmon resonance spectroscopy.}, language = {en} } @article{WuGlebeBoeker2017, author = {Wu, Lei and Glebe, Ulrich and B{\"o}ker, Alexander}, title = {Fabrication of Thermoresponsive Plasmonic Core-Satellite Nanoassemblies with a Tunable Stoichiometry via Surface-Initiated Reversible Addition-Fragmentation Chain Transfer Polymerization from Silica Nanoparticles}, series = {Advanced materials interfaces}, volume = {4}, journal = {Advanced materials interfaces}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.201700092}, pages = {10}, year = {2017}, abstract = {This work presents a fabrication of thermoresponsive plasmonic core-satellite nanoassemblies. The structure has a silica nanoparticle core surrounded by gold nanoparticle satellites using thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) chains as scaffolds. The thiol-terminated PNIPAM shell is densely grafted on the silica core via surface-initiated reversible addition-fragmentation chain transfer polymerization and used to anchor numerous gold nanoparticle satellites with a tunable stoichiometry. Below and above lower critical solution temperature, the chain conformation of PNIPAM reversibly changes between swollen and shrunken state. The reversible change of the polymer size varies the refractive index of the local medium surrounding the satellites and the distance between them. The two effects together lead to the thermoresponsive plasmonic properties of the nanoassemblies. Under different satellite densities, two distinctive plasmonic features appear.}, language = {en} } @article{ParkChengBoekeretal.2016, author = {Park, Sungjune and Cheng, Xiao and B{\"o}ker, Alexander and Tsarkova, Larisa}, title = {Hierarchical Manipulation of Block Copolymer Patterns on 3D Topographic Substrates: Beyond Graphoepitaxy}, series = {Advanced materials}, volume = {28}, journal = {Advanced materials}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201601098}, pages = {6900 -- +}, year = {2016}, abstract = {Templates of complex nanopatterns in a form of hierarchically sequenced dots and stripes can be generated in block copolymer films on lithography-free 3D topographic substrates. The approach exploits thickness- and swelling-responsive morphological behavior of block copolymers, and demonstrates novel possibilities of topography-guided registration of nanopatterns due to periodic confinement and spontaneous orthogonal flow-fields.}, language = {en} } @article{TanLiuGlebeetal.2018, author = {Tan, Li and Liu, Bing and Glebe, Ulrich and B{\"o}ker, Alexander}, title = {Magnetic Field-Induced Assembly of Superparamagnetic Cobalt Nanoparticles on Substrates and at Liquid-Air Interface}, series = {Langmuir}, volume = {34}, journal = {Langmuir}, number = {46}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.8b02673}, pages = {13993 -- 14002}, year = {2018}, abstract = {Superparamagnetic cobalt nanoparticles (Co NPs) are an interesting material for self-assembly processes because of their magnetic properties. We investigated the magnetic field-induced assembly of superparamagnetic cobalt nanoparticles and compared three different approaches, namely, the assembly on solid substrates, at water-air, and ethylene glycol-air interfaces. Oleic acid- and trioctylphosphine oxide-coated Co NPs were synthesized via a thermolysis of cobalt carbonyl and dispersed into either hexane or toluene. The Co NP dispersion was dropped onto different substrates (e.g., transmission electron microscopy (TEM) grid, silicon wafer) and onto liquid surfaces. Transmission electron microscopy (TEM), scanning force microscopy, optical microscopy, as well as scanning electron microscopy showed that superparamagnetic Co NPs assembled into one-dimensional chains in an external magnetic field. By varying the concentration of the Co NP dispersion (1-5 mg/mL) and the strength of the magnetic field (4-54 mT), the morphology of the chains changed. Short, thin, and flexible chain structures were obtained at low NP concentration and low strength of magnetic field, whereas they became long, thick and straight when the NP concentration and the magnetic field strength increased. In comparison, the assembly of Co NPs from hexane dispersion at ethylene glycol-air interface showed the most regular and homogeneous alignment, since a more efficient spreading could be achieved on ethylene glycol than on water and solid substrates.}, language = {en} } @article{SunGlebeCharanetal.2018, author = {Sun, Zhiyong and Glebe, Ulrich and Charan, Himanshu and B{\"o}ker, Alexander and Wu, Changzhu}, title = {Enzyme-Polymer Conjugates as Robust Pickering Interfacial Biocatalysts for Efficient Biotransformations and One-Pot Cascade Reactions}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {57}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {42}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201806049}, pages = {13810 -- 13814}, year = {2018}, abstract = {Despite the rapid development of Pickering interfacial catalysis (PIC) at liquid-liquid interfaces with chemocatalysts, the use of unstable biocatalysts at emulsion interfaces remains a technical challenge. Herein, we present a Pickering interfacial biocatalysis (PIB) platform based on robust and recyclable enzyme-polymer conjugates that act as both catalytic sites and stabilizers at the interface of Pickering emulsions. The conjugates were prepared by growing poly(N-isopropylacrylamide) on a fragile enzyme, benzaldehyde lyase, under physiological conditions. The mild in situ conjugation process preserved the enzyme structure, and the conjugates were used to emulsify a water-organic two-phase system into a stable Pickering emulsion, leading to a significantly larger interfacial area and a 270-fold improvement in catalytic performance as compared to the unemulsified two-phase system. The PIB system could be reused multiple times. Conjugates of other enzymes were also fabricated and applied for cascade reactions.}, language = {en} } @article{SchueringsNevskyiEliaschetal.2016, author = {Sch{\"u}rings, Marco-Philipp and Nevskyi, Oleksii and Eliasch, Kamill and Michel, Ann-Katrin and Liu, Bing and Pich, Andrij and B{\"o}ker, Alexander and von Plessen, Gero and W{\"o}ll, Dominik}, title = {Diffusive Motion of Linear Microgel Assemblies in Solution}, series = {Polymers}, volume = {8}, journal = {Polymers}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym8120413}, pages = {14}, year = {2016}, abstract = {Due to the ability of microgels to rapidly contract and expand in response to external stimuli, assemblies of interconnected microgels are promising for actuation applications, e.g., as contracting fibers for artificial muscles. Among the properties determining the suitability of microgel assemblies for actuation are mechanical parameters such as bending stiffness and mobility. Here, we study the properties of linear, one-dimensional chains of poly(N-vinylcaprolactam) microgels dispersed in water. They were fabricated by utilizing wrinkled surfaces as templates and UV-cross-linking the microgels. We image the shapes of the chains on surfaces and in solution using atomic force microscopy (AFM) and fluorescence microscopy, respectively. In solution, the chains are observed to execute translational and rotational diffusive motions. Evaluation of the motions yields translational and rotational diffusion coefficients and, from the translational diffusion coefficient, the chain mobility. The microgel chains show no perceptible bending, which yields a lower limit on their bending stiffness.}, language = {en} } @article{ParkWaltaRosencrantzetal.2016, author = {Park, H. and Walta, S. and Rosencrantz, Ruben R. and Koerner, A. and Schulte, Christoph and Elling, L. and Richtering, Walter and B{\"o}ker, Alexander}, title = {Micelles from self-assembled double-hydrophilic PHEMA-glycopolymer-diblock copolymers as multivalent scaffolds for lectin binding}, series = {Polymer Chemistry}, volume = {7}, journal = {Polymer Chemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c5py00797f}, pages = {878 -- 886}, year = {2016}, abstract = {We introduce a novel double-hydrophilic hydroxyethylmethacrylate (HEMA) based diblock glycopolymer which self-assembles into homogeneous spherical micellar structures in water. The micellar structure renders surface-oriented N-acetylglucocosamine (GlcNAc) sugar moieties for strong multivalent glycan-mediated lectin binding. Structural analysis and lectin binding is performed by microscopy methods, dynamic light scattering (DLS) and two-focus fluorescence correlation spectroscopy (2fFCS), revealing a novel micellar type of multivalent sugar binding scaffold with high potential for biomedical applications.}, language = {en} }