@article{PudellMaznevHerzogetal.2018, author = {Pudell, Jan-Etienne and Maznev, A. A. and Herzog, Marc and Kronseder, M. and Back, Christian H. and Malinowski, Gregory and von Reppert, Alexander and Bargheer, Matias}, title = {Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-05693-5}, pages = {7}, year = {2018}, abstract = {Ultrafast heat transport in nanoscale metal multilayers is of great interest in the context of optically induced demagnetization, remagnetization and switching. If the penetration depth of light exceeds the bilayer thickness, layer-specific information is unavailable from optical probes. Femtosecond diffraction experiments provide unique experimental access to heat transport over single digit nanometer distances. Here, we investigate the structural response and the energy flow in the ultrathin double-layer system: gold on ferromagnetic nickel. Even though the excitation pulse is incident from the Au side, we observe a very rapid heating of the Ni lattice, whereas the Au lattice initially remains cold. The subsequent heat transfer from Ni to the Au lattice is found to be two orders of magnitude slower than predicted by the conventional heat equation and much slower than electron-phonon coupling times in Au. We present a simplified model calculation highlighting the relevant thermophysical quantities.}, language = {en} } @article{vonReppertPuddellKocetal.2016, author = {von Reppert, Alexander and Puddell, J. and Koc, A. and Reinhardt, M. and Leitenberger, Wolfram and Dumesnil, K. and Zamponi, Flavio and Bargheer, Matias}, title = {Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet}, series = {Structural dynamics}, volume = {3}, journal = {Structural dynamics}, publisher = {AIP Publishing LLC}, address = {Melville, NY}, issn = {2329-7778}, doi = {10.1063/1.4961253}, year = {2016}, abstract = {We present a temperature and fluence dependent Ultrafast X-Ray Diffraction study of a laser-heated antiferromagnetic dysprosium thin film. The loss of antiferromagnetic order is evidenced by a pronounced lattice contraction. We devise a method to determine the energy flow between the phonon and spin system from calibrated Bragg peak positions in thermal equilibrium. Reestablishing the magnetic order is much slower than the cooling of the lattice, especially around the N{\´e}el temperature. Despite the pronounced magnetostriction, the transfer of energy from the spin system to the phonons in Dy is slow after the spin-order is lost.}, language = {en} } @article{vonReppertSarhanSteteetal.2016, author = {von Reppert, Alexander and Sarhan, Radwan Mohamed and Stete, Felix and Pudell, Jan-Etienne and Del Fatti, N. and Crut, A. and Koetz, Joachim and Liebig, Ferenc and Prietzel, Claudia Christina and Bargheer, Matias}, title = {Watching the Vibration and Cooling of Ultrathin Gold Nanotriangles by Ultrafast X-ray Diffraction}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {120}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.6b11651}, pages = {28894 -- 28899}, year = {2016}, abstract = {We study the vibrations of ultrathin gold nanotriangles upon optical excitation of the electron gas by ultrafast X-ray diffraction. We quantitatively measure the strain evolution in these highly asymmetric nano-objects, providing a direct estimation of the amplitude and phase of the excited vibrational motion. The maximal strain value is well reproduced by calculations addressing pump absorption by the nanotriangles and their resulting thermal expansion. The amplitude and phase of the out-of-plane vibration mode with 3.6 ps period dominating the observed oscillations are related to two distinct excitation mechanisms. Electronic and phonon pressures impose stresses with different time dependences. The nanosecond relaxation of the expansion yields a direct temperature sensing of the nano-object. The presence of a thin organic molecular layer at the nanotriangle/substrate interfaces drastically reduces the thermal conductance to the substrate.}, language = {en} } @misc{vonReppertPuddellKocetal.2016, author = {von Reppert, Alexander and Puddell, J. and Koc, A. and Reinhardt, M. and Leitenberger, Wolfram and Dumesnil, K. and Zamponi, Flavio and Bargheer, Matias}, title = {Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98710}, pages = {11}, year = {2016}, abstract = {We present a temperature and fluence dependent Ultrafast X-Ray Diffraction study of a laser-heated antiferromagnetic dysprosium thin film. The loss of antiferromagnetic order is evidenced by a pronounced lattice contraction. We devise a method to determine the energy flow between the phonon and spin system from calibrated Bragg peak positions in thermal equilibrium. Reestablishing the magnetic order is much slower than the cooling of the lattice, especially around the N{\´e}el temperature. Despite the pronounced magnetostriction, the transfer of energy from the spin system to the phonons in Dy is slow after the spin-order is lost.}, language = {en} } @article{SanderKocKwamenetal.2016, author = {Sander, Mathias and Koc, A. and Kwamen, C. T. and Michaels, H. and von Reppert, Alexander and Pudell, Jan-Etienne and Zamponi, Flavio and Bargheer, Matias and Sellmann, J. and Schwarzkopf, J. and Gaal, P.}, title = {Characterization of an ultrafast Bragg-Switch for shortening hard x-ray pulses}, series = {Journal of applied physics}, volume = {120}, journal = {Journal of applied physics}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/1.4967835}, pages = {7}, year = {2016}, abstract = {We present a nanostructured device that functions as photoacoustic hard x-ray switch. The device is triggered by femtosecond laser pulses and allows for temporal gating of hard x-rays on picosecond (ps) timescales. It may be used for pulse picking or even pulse shortening in 3rd generation synchrotron sources. Previous approaches mainly suffered from insufficient switching contrasts due to excitation-induced thermal distortions. We present a new approach where thermal distortions are spatially separated from the functional switching layers in the structure. Our measurements yield a switching contrast of 14, which is sufficient for efficient hard x-ray pulse shortening. The optimized structure also allows for utilizing the switch at high repetition rates of up to 208 kHz. Published by AIP Publishing.}, language = {en} } @article{KocReinhardtvonReppertetal.2017, author = {Koc, A. and Reinhardt, M. and von Reppert, Alexander and R{\"o}ssle, Matthias and Leitenberger, Wolfram and Gleich, M. and Weinelt, M. and Zamponi, Flavio and Bargheer, Matias}, title = {Grueneisen-approach for the experimental determination of transient spin and phonon energies from ultrafast x-ray diffraction data: gadolinium}, series = {Journal of physics : Condensed matter}, volume = {29}, journal = {Journal of physics : Condensed matter}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0953-8984}, doi = {10.1088/1361-648X/aa7187}, pages = {5884 -- 5891}, year = {2017}, abstract = {We study gadolinium thin films as a model system for ferromagnets with negative thermal expansion. Ultrashort laser pulses heat up the electronic subsystem and we follow the transient strain via ultrafast x-ray diffraction. In terms of a simple Grueneisen approach, the strain is decomposed into two contributions proportional to the thermal energy of spin and phonon subsystems. Our analysis reveals that upon femtosecond laser excitation, phonons and spins can be driven out of thermal equilibrium for several nanoseconds.}, language = {en} } @article{HerzogvonReppertPudelletal.2022, author = {Herzog, Marc and von Reppert, Alexander and Pudell, Jan-Etienne and Henkel, Carsten and Kronseder, Matthias and Back, Christian H. and Maznev, Alexei A. and Bargheer, Matias}, title = {Phonon-dominated energy transport in purely metallic heterostructures}, series = {Advanced functional materials}, volume = {32}, journal = {Advanced functional materials}, number = {41}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.202206179}, pages = {8}, year = {2022}, abstract = {Ultrafast X-ray diffraction is used to quantify the transport of energy in laser-excited nanoscale gold-nickel (Au-Ni) bilayers. Electron transport and efficient electron-phonon coupling in Ni convert the laser-deposited energy in the conduction electrons within a few picoseconds into a strong non-equilibrium between hot Ni and cold Au phonons at the bilayer interface. Modeling of the subsequent equilibration dynamics within various two-temperature models confirms that for ultrathin Au films, the thermal transport is dominated by phonons instead of conduction electrons because of the weak electron-phonon coupling in Au.}, language = {en} } @article{vonReppertPudellKocetal.2016, author = {von Reppert, Alexander and Pudell, Jan-Etienne and Koc, A. and Reinhardt, M. and Leitenberger, Wolfram and Dumesnil, K. and Zamponi, Flavio and Bargheer, Matias}, title = {Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet}, series = {Structural dynamics}, volume = {3}, journal = {Structural dynamics}, publisher = {American Institute of Physics}, address = {Melville}, issn = {2329-7778}, doi = {10.1063/1.4961253}, pages = {11}, year = {2016}, abstract = {We present a temperature and fluence dependent Ultrafast X-Ray Diffraction study of a laser-heated antiferromagnetic dysprosium thin film. The loss of antiferromagnetic order is evidenced by a pronounced lattice contraction. We devise a method to determine the energy flow between the phonon and spin system from calibrated Bragg peak positions in thermal equilibrium. Reestablishing the magnetic order is much slower than the cooling of the lattice, especially around the Neel temperature. Despite the pronounced magnetostriction, the transfer of energy from the spin system to the phonons in Dy is slow after the spin-order is lost. (C) 2016 Author(s).}, language = {en} }