@article{GonzalezFortesTassiTrucchietal.2019, author = {Gonzalez-Fortes, Gloria M. and Tassi, F. and Trucchi, E. and Henneberger, K. and Paijmans, Johanna L. A. and Diez-del-Molino, D. and Schroeder, H. and Susca, R. R. and Barroso-Ruiz, C. and Bermudez, F. J. and Barroso-Medina, C. and Bettencourt, A. M. S. and Sampaio, H. A. and Salas, A. and de Lombera-Hermida, A. and Fabregas Valcarce, Ram{\´o}n and Vaquero, M. and Alonso, S. and Lozano, Marina and Rodriguez-Alvarez, Xose Pedro and Fernandez-Rodriguez, C. and Manica, Andrea and Hofreiter, Michael and Barbujani, Guido}, title = {A western route of prehistoric human migration from Africa into the Iberian Peninsula}, series = {Proceedings of the Royal Society of London : B, Biological sciences}, volume = {286}, journal = {Proceedings of the Royal Society of London : B, Biological sciences}, number = {1895}, publisher = {Royal Society}, address = {London}, issn = {0962-8452}, doi = {10.1098/rspb.2018.2288}, pages = {10}, year = {2019}, abstract = {Being at the western fringe of Europe, Iberia had a peculiar prehistory and a complex pattern of Neolithization. A few studies, all based on modern populations, reported the presence of DNA of likely African origin in this region, generally concluding it was the result of recent gene flow, probably during the Islamic period. Here, we provide evidence of much older gene flow from Africa to Iberia by sequencing whole genomes from four human remains from northern Portugal and southern Spain dated around 4000 years BP (from the Middle Neolithic to the Bronze Age). We found one of them to carry an unequivocal sub-Saharan mitogenome of most probably West or West-Central African origin, to our knowledge never reported before in prehistoric remains outside Africa. Our analyses of ancient nuclear genomes show small but significant levels of sub-Saharan African affinity in several ancient Iberian samples, which indicates that what we detected was not an occasional individual phenomenon, but an admixture event recognizable at the population level. We interpret this result as evidence of an early migration process from Africa into the Iberian Peninsula through a western route, possibly across the Strait of Gibraltar.}, language = {en} } @article{VonRaabStraubeRausBazosetal.2019, author = {Von Raab-Straube, Eckhard and Raus, Thomas and Bazos, Ioannis and Cornec, J. P. and De Belair, Gerard. and Dimitrakopoulos, P. G. and El Mokni, Ridha and Fateryga, Alexander V. and Fateryga, Valentina V. and Fridlender, Alain and Gil, Jaime and Grigorenko, V. N. and Hand, Ralf and Kovalchuk, A. and Mastrogianni, A. and Otto, R. and R{\"a}tzel, Stefan and Raus, Th. and Ristow, Michael and Salas Pascual, M. and Strid, Arne and Svirin, S. A. and Tsiripidis, Ioannis. and Uhlich, Holger and Vela, Errol and Verloove, Filip and Vidakis, K. and Yena, Andriy Vasylyovych and Yevseyenkov, P. E. and Zeddam, A.}, title = {Euro plus Med-Checklist Notulae, 11}, series = {Willdenowia}, volume = {49}, journal = {Willdenowia}, number = {3}, publisher = {Botanischer Garten \& botanisches Museum Berlin-Dahlem}, address = {Berlin}, issn = {0511-9618}, doi = {10.3372/wi.49.49312}, pages = {421 -- 445}, year = {2019}, abstract = {This is the eleventh of a series of miscellaneous contributions, by various authors, where hitherto unpublished data relevant to both the Med-Checklist and the Euro+Med (or Sisyphus) projects are presented. This instalment deals with the families Anacardiaceae, Asparagaceae (incl. Hyacinthaceae), Bignoniaceae, Cactaceae, Compositae, Cruciferae, Cyperaceae, Ericaceae, Gramineae, Labiatae, Leguminosae, Orobanchaceae, Polygonaceae, Rosaceae, Solanaceae and Staphyleaceae. It includes new country and area records and taxonomic and distributional considerations for taxa in Bidens, Campsis, Centaurea, Cyperus, Drymocallis, Engem, Hoffmannseggia, Hypopitys, Lavandula, Lithraea, Melilotus, Nicotiana, Olimarabidopsis, Opuntia, Orobanche, Phelipanche, Phragmites, Rumex, Salvia, Schinus, Staphylea, and a new combination in Drimia.}, language = {en} } @article{MartinMartinGomezRivasBoverArnaletal.2013, author = {Martin-Martin, J. D. and Gomez-Rivas, E. and Bover-Arnal, T. and Trave, A. and Salas, R. and Moreno-Bedmar, J. A. and Tomas, S. and Corbella, M. and Teixell, A. and Verges, J. and Stafford, S. L.}, title = {The Upper Aptian to Lower Albian syn-rift carbonate succession of the southern Maestrat Basin (Spain): Facies architecture and fault-controlled stratabound dolostones}, series = {CRETACEOUS RESEARCH}, volume = {41}, journal = {CRETACEOUS RESEARCH}, number = {4}, publisher = {ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD}, address = {LONDON}, issn = {0195-6671}, doi = {10.1016/j.cretres.2012.12.008}, pages = {217 -- 236}, year = {2013}, abstract = {Syn-rift shallow-marine carbonates of Late Aptian to Early Albian age in the southern Maestrat Basin (E Spain) register the thickest Aptian sedimentary record of the basin, and one of the most complete carbonate successions of this age reported in the northern Tethyan margin. The host limestones (Benassal Formation) are partially replaced by dolostones providing a new case study of fault-controlled hydrothermal dolomitization. The syn-rift sediments filled a graben controlled by normal basement faults. The Benassal Fm was deposited in a carbonate ramp with scarce siliciclastic input. The lithofacies are mainly characterized by the presence of orbitolinid foraminifera, corals and rudist bivalves fauna. The succession is stacked in three transgressive-regressive sequences (T-R) bounded by surfaces with sequence stratigraphic significance. The third sequence, which is reported for the first time in the basin, is formed by fully marine lithofacies of Albian age and represents the marine equivalent to the continental deposits of the Escucha Fm in the rest of the basin. The dolomitization of the host rock is spatially associated with the basement faults, and thus is fault-controlled. The dolostone forms seismic-scale stratabound tabular geobodies that extend several kilometres away from the fault zones, mostly in the hanging wall blocks, and host Mississippi Valley Type (MVT) deposits. The dolostones preferentially replaced middle to inner ramp grain-dominated fades from the third T-R sequences consisting of bioclastic packestones and peloidal grainstones. Field and petrology data indicate that the replacement took place after early calcite cementation and compaction, most likely during the Late Cretaceous post-rift stage of the basin. The dolostone registers the typical hydrothermal paragenesis constituted by the host limestone replacement, dolomite cementation and sulfide MVT mineralization. The Aptian succession studied provides a stratigraphic framework that can be used for oil exploration in age-equivalent rocks, especially in the Valencia Trough, offshore Spain. Moreover, this new case study constitutes a world class outcrop analogue for similar partially stratabound, dolomitized limestone reservoirs worldwide. (c) 2013 Elsevier Ltd. All rights reserved.}, language = {en} }