@article{WochatzRabeWolteretal.2017, author = {Wochatz, Monique and Rabe, Sophie and Wolter, Martin and Engel, Tilman and Mueller, Steffen and Mayer, Frank}, title = {Muscle activity of upper and lower trapezius and serratus anterior during unloaded and maximal loaded shoulder flexion and extension}, series = {International Biomechanics}, volume = {4}, journal = {International Biomechanics}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, doi = {https://doi.org/10.1080/23335432.2017.1364668}, pages = {68 -- 76}, year = {2017}, abstract = {Altered scapular muscle activity is mostly described under unloaded and submaximal loaded conditions in impingement patients. However, there is no clear evidence on muscle activity with respect to movement phases under maximum load in healthy subjects. Therefore, this study aimed to investigate scapular muscle activity under unloaded and maximum loaded isokinetic shoulder flexion and extension in regard to the movement phase. Fourteen adults performed unloaded (continuous passive motion [CPM]) as well as maximum loaded (concentric [CON], eccentric [ECC]) isokinetic shoulder flexion (Flex) and extension (Ext). Simultaneously, scapular muscle activity was measured by EMG. Root mean square was calculated for the whole ROM and four movement phases. Data were analyzed descriptively and by two-way repeated measures ANOVA. CPMFlex resulted in a linear increase of muscle activity for all muscles. Muscle activity during CONFlex and ECCFlex resulted in either constant activity levels or in an initial increase followed by a plateau in the second half of movement. CPMExt decreased with the progression of movement, whereas CONExt and ECCExt initially decreased and either levelled off or increased in the second half of movement. Scapular muscle activity of unloaded shoulder flexion and extension changed under maximum load showing increased activity levels and an altered pattern over the course of movement.}, language = {en} } @article{RischWochatzMesserschmidtetal.2017, author = {Risch, Lucie and Wochatz, Monique and Messerschmidt, Janin and Engel, Tilman and Mayer, Frank and Cassel, Michael}, title = {Reliability of evaluating achilles tendon vascularization assessed with doppler ultrasound advanced dynamic flow}, series = {Journal of ultrasound in medicine}, volume = {37}, journal = {Journal of ultrasound in medicine}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0278-4297}, doi = {10.1002/jum.14414}, pages = {737 -- 744}, year = {2017}, abstract = {The reliability of quantifying intratendinous vascularization by high-sensitivity Doppler ultrasound advanced dynamic flow has not been examined yet. Therefore, this study aimed to investigate the intraobserver and interobserver reliability of evaluating Achilles tendon vascularization by advanced dynamic flow using established scoring systems. Methods-Three investigators evaluated vascularization in 67 recordings in a test-retest design, applying the Ohberg score, a modified Ohberg score, and a counting score. Intraobserver and interobserver agreement for the Ohberg score and modified Ohberg score was analyzed by the Cohen kappa and Fleiss kappa coefficients (absolute), Kendall tau b coefficient, and Kendall coefficient of concordance (W; relative). The reliability of the counting score was analyzed by intraclass correlation coefficients (ICC) 2.1 and 3.1, the standard error of measurement (SEM), and Bland-Altman analysis (bias and limits of agreement [LoA]). Results-Intraobserver and interobserver agreement (absolute/relative) ranged from 0.61 to 0.87/0.87 to 0.95 and 0.11 to 0.66/0.76 to 0.89 for the Ohberg score and from 0.81 to 0.87/0.92 to 0.95 and 0.64 to 0.80/0.88 to 0.93 for the modified Ohberg score, respectively. The counting score revealed an intraobserver ICC of 0.94 to 0.97 (SEM, 1.0-1.5; bias, -1; and LoA, 3-4 vessels). The interobserver ICC for the counting score ranged from 0.91 to 0.98 (SEM, 1.0-1.9; bias, 0; and LoA, 3-5 vessels). Conclusions-The modified Ohberg score and counting score showed excellent reliability and seem convenient for research and clinical practice. The Ohberg score revealed decent intraobserver but unexpected low interobserver reliability and therefore cannot be recommended.}, language = {en} } @article{WochatzRabeWolteretal.2017, author = {Wochatz, Monique and Rabe, Sophie and Wolter, Martin and Engel, Tilman and Mueller, Steffen and Mayer, Frank}, title = {Reproducibility of scapular muscle activity in isokinetic shoulder flexion and extension}, series = {Journal of electromyography and kinesiology}, volume = {34}, journal = {Journal of electromyography and kinesiology}, publisher = {Elsevier}, address = {Oxford}, issn = {1050-6411}, doi = {10.1016/j.jelekin.2017.04.006}, pages = {86 -- 92}, year = {2017}, abstract = {Repetitive overhead movements have been identified as a main risk factor to develop shoulder complaints with scapular muscle activity being altered. Reliable assessment of muscle activity is essential to differentiate between symptomatic and asymptomatic individuals. Therefore, the present study aimed to investigate the intra-and inter-session reliability of scapular muscle activity during maximal isokinetic shoulder flexion and extension. Eleven asymptomatic adults performed maximum effort isokinetic shoulder flexion and extension (concentric and eccentric at 60 degrees/s) in a test-retest design. Muscle activity of the upper and lower trapezius and serratus anterior was assessed by sEMG. Root Mean Square was calculated for whole ROM and single movement phases of absolute and normalized muscle activity. Absolute (Bland-Altman analysis (Bias, LoA), Minimal detectable change (MDC)) and relative reliability parameters (Intraclass correlation coefficient (ICC), coefficient of variation (CV)/test-retest variability (TRV)) were utilized for the evaluation of reproducibility. Intra-session reliability revealed ICCs between 0.56 and 0.98, averaged CVs of 18\% and average MDCs of 81 mV. Inter-session reliability resulted in ICCs between 0.13 and 0.93, averaged TRVs of 21\%, average MDCs of 15\% and systematic and random error between -8 +/- 60\% and 12 +/- 36\%. Scapular muscle activity assessed in overhead movements can be measured reliably under maximum load conditions, though variability is dependent on the movement phase. Measurement variability does not exceed magnitudes of altered scapular muscle activities as reported in previous studies. Therefore, maximum load application is a promising approach for the evaluation of changes in scapular control related to pathologies. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} }