@misc{DrielGesztelyiBakerToeroeketal.2013, author = {Driel-Gesztelyi, L. van and Baker, Daniel N. and T{\"o}r{\"o}k, Tibor and Pariat, Etienne and Green, L. M. and Williams, D. R. and Carlyle, J. and Valori, G. and D{\´e}moulin, Pascal and Matthews, S. A. and Kliem, Bernhard and Malherbe, J.-M.}, title = {Magnetic reconnection driven by filament eruption in the 7 June 2011 event}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {608}, doi = {10.25932/publishup-41567}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-415671}, pages = {502 -- 503}, year = {2013}, abstract = {During an unusually massive filament eruption on 7 June 2011, SDO/AIA imaged for the first time significant EUV emission around a magnetic reconnection region in the solar corona. The reconnection occurred between magnetic fields of the laterally expanding CME and a neighbouring active region. A pre-existing quasi-separatrix layer was activated in the process. This scenario is supported by data-constrained numerical simulations of the eruption. Observations show that dense cool filament plasma was re-directed and heated in situ, producing coronal-temperature emission around the reconnection region. These results provide the first direct observational evidence, supported by MHD simulations and magnetic modelling, that a large-scale re-configuration of the coronal magnetic field takes place during solar eruptions via the process of magnetic reconnection.}, language = {en} }