@misc{DrielGesztelyiBakerToeroeketal.2013, author = {Driel-Gesztelyi, L. van and Baker, Daniel N. and T{\"o}r{\"o}k, Tibor and Pariat, Etienne and Green, L. M. and Williams, D. R. and Carlyle, J. and Valori, G. and D{\´e}moulin, Pascal and Matthews, S. A. and Kliem, Bernhard and Malherbe, J.-M.}, title = {Magnetic reconnection driven by filament eruption in the 7 June 2011 event}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {608}, doi = {10.25932/publishup-41567}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-415671}, pages = {502 -- 503}, year = {2013}, abstract = {During an unusually massive filament eruption on 7 June 2011, SDO/AIA imaged for the first time significant EUV emission around a magnetic reconnection region in the solar corona. The reconnection occurred between magnetic fields of the laterally expanding CME and a neighbouring active region. A pre-existing quasi-separatrix layer was activated in the process. This scenario is supported by data-constrained numerical simulations of the eruption. Observations show that dense cool filament plasma was re-directed and heated in situ, producing coronal-temperature emission around the reconnection region. These results provide the first direct observational evidence, supported by MHD simulations and magnetic modelling, that a large-scale re-configuration of the coronal magnetic field takes place during solar eruptions via the process of magnetic reconnection.}, language = {en} } @article{vanDrielGesztelyiBakerToeroeketal.2014, author = {van Driel-Gesztelyi, L. and Baker, Daniel N. and Toeroek, T. and Pariat, E. and Green, L. M. and Williams, D. R. and Carlyle, J. and Valori, G. and Demoulin, P. and Kliem, Bernhard and Long, D. M. and Matthews, S. A. and Malherbe, J. -M.}, title = {Coronal magnetic reconnection driven by CME expansion-the 2011 June 7 event}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {788}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/788/1/85}, pages = {12}, year = {2014}, abstract = {Coronal mass ejections (CMEs) erupt and expand in a magnetically structured solar corona. Various indirect observational pieces of evidence have shown that the magnetic field of CMEs reconnects with surrounding magnetic fields, forming, e.g., dimming regions distant from the CME source regions. Analyzing Solar Dynamics Observatory (SDO) observations of the eruption from AR 11226 on 2011 June 7, we present the first direct evidence of coronal magnetic reconnection between the fields of two adjacent active regions during a CME. The observations are presented jointly with a data-constrained numerical simulation, demonstrating the formation/intensification of current sheets along a hyperbolic flux tube at the interface between the CME and the neighboring AR 11227. Reconnection resulted in the formation of new magnetic connections between the erupting magnetic structure from AR 11226 and the neighboring active region AR 11227 about 200 Mm from the eruption site. The onset of reconnection first becomes apparent in the SDO/AIA images when filament plasma, originally contained within the erupting flux rope, is redirected toward remote areas in AR 11227, tracing the change of large-scale magnetic connectivity. The location of the coronal reconnection region becomes bright and directly observable at SDO/AIA wavelengths, owing to the presence of down-flowing cool, dense (1010 cm(-3)) filament plasma in its vicinity. The high-density plasma around the reconnection region is heated to coronal temperatures, presumably by slow-mode shocks and Coulomb collisions. These results provide the first direct observational evidence that CMEs reconnect with surrounding magnetic structures, leading to a large-scale reconfiguration of the coronal magnetic field.}, language = {en} }