@phdthesis{Titirici2013, author = {Titirici, Maria-Magdalena}, title = {Hydrothermal carbonisation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66885}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The world's appetite for energy is producing growing quantities of CO2, a pollutant that contributes to the warming of the planet and which currently cannot be removed or stored in any significant way. Other natural reserves are also being devoured at alarming rates and current assessments suggest that we will need to identify alternative sources in the near future. With the aid of materials chemistry it should be possible to create a world in which energy use needs not be limited and where usable energy can be produced and stored wherever it is needed, where we can minimize and remediate emissions as new consumer products are created, whilst healing the planet and preventing further disruptive and harmful depletion of valuable mineral assets. In achieving these aims, the creation of new and very importantly greener industries and new sustainable pathways are crucial. In all of the aforementioned applications, new materials based on carbon, ideally produced via inexpensive, low energy consumption methods, using renewable resources as precursors, with flexible morphologies, pore structures and functionalities, are increasingly viewed as ideal candidates to fulfill these goals. The resulting materials should be a feasible solution for the efficient storage of energy and gases. At the end of life, such materials ideally must act to improve soil quality and to act as potential CO2 storage sinks. This is exactly the subject of this habilitation thesis: an alternative technology to produce carbon materials from biomass in water using low carbonisation temperatures and self-generated pressures. This technology is called hydrothermal carbonisation. It has been developed during the past five years by a group of young and talented researchers working under the supervision of Dr. Titirici at the Max-Planck Institute of Colloids and Interfaces and it is now a well-recognised methodology to produce carbon materials with important application in our daily lives. These applications include electrodes for portable electronic devices, filters for water purification, catalysts for the production of important chemicals as well as drug delivery systems and sensors.}, language = {en} } @article{GoebelXieNeumannetal.2012, author = {Goebel, Ronald and Xie, Zai-Lai and Neumann, Mike and G{\"u}nter, Christina and Loebbicke, Ruben and Kubo, Shiori and Titirici, Maria-Magdalena and Giordano, Cristina and Taubert, Andreas}, title = {Synthesis of mesoporous carbon/iron carbide hybrids with unusually high surface areas from the ionic liquid precursor [Bmim][FeCl4]}, series = {CrystEngComm}, volume = {14}, journal = {CrystEngComm}, number = {15}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1466-8033}, doi = {10.1039/c2ce25064k}, pages = {4946 -- 4951}, year = {2012}, abstract = {Mesoporous carbon/iron carbide hybrid materials with surface areas reaching 800 m(2) g(-1) were synthesized via an exotemplating route using monolithic mesoporous silica as template and the ionic liquid 1-butyl-3-methylimidazolium tetrachloridoferrate(III) [Bmim][FeCl4] as carbon and iron source. After heat treatment (750 degrees C under argon) of the [Bmim][FeCl4] precursor confined within the silica matrix, the silica exotemplate was removed with HF leaving the mesoporous C/Fe3C hybrid behind. The surface areas and the pore sizes depend on the exotemplate and the surface areas a significantly larger than any other surface area reported for C/Fe3C hybrid materials so far. The approach is thus a prototype for the synthesis of high-surface area iron carbide-based hybrid materials with potential application in catalysis.}, language = {en} } @article{GoebelWhiteTitiricietal.2012, author = {Goebel, Ronald and White, Robin J. and Titirici, Maria-Magdalena and Taubert, Andreas}, title = {Carbon-based ionogels tuning the properties of the ionic liquid via carbon-ionic liquid interaction}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {14}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {17}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c2cp23929a}, pages = {5992 -- 5997}, year = {2012}, abstract = {The behavior of two ionic liquids (ILs), 1-ethyl-3-methylimidazolium dicyanamide [Emim][DCA] and 1-ethyl-3-methylimidazolium triflate [Emim][TfO], in (meso) porous carbonaceous hosts was investigated. Prior to IL incorporation into the host, the carbon matrix was thermally annealed between 180 and 900 degrees C to control carbon condensation and surface chemistry. The resulting materials have an increasing "graphitic'' carbon character with increasing treatment temperature, reflected in a modified behavior of the ILs when impregnated into the carbon host. The two ILs show significant changes in the thermal behavior as measured from differential scanning calorimetry; these changes can be assigned to anion-pi interaction between the IL anions and the pore wall surfaces of these flexible carbonaceous support materials.}, language = {en} } @article{XieHuangTitiricietal.2014, author = {Xie, Zai-Lai and Huang, Xing and Titirici, Maria-Magdalena and Taubert, Andreas}, title = {Mesoporous graphite nanoflakes via ionothermal carbonization of fructose and their use in dye removal}, series = {RSC Advances}, volume = {4}, journal = {RSC Advances}, number = {70}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c4ra05146g}, pages = {37423 -- 37430}, year = {2014}, abstract = {The large-scale green synthesis of graphene-type two-dimensional materials is still challenging. Herein, we describe the ionothermal synthesis of carbon-based composites from fructose in the iron-containing ionic liquid 1-butyl-3-methylimidazolium tetrachloridoferrate(III), [Bmim][FeCl4] serving as solvent, catalyst, and template for product formation. The resulting composites consist of oligo-layer graphite nanoflakes and iron carbide particles. The mesoporosity, strong magnetic moment, and high specific surface area of the composites make them attractive for water purification with facile magnetic separation. Moreover, Fe3Cfree graphite can be obtained via acid etching, providing access to fairly large amounts of graphite material. The current approach is versatile and scalable, and thus opens the door to ionothermal synthesis towards the larger-scale synthesis of materials that are, although not made via a sustainable process, useful for water treatment such as the removal of organic molecules.}, language = {en} } @misc{XieHuangTitiricietal.2014, author = {Xie, Zai-Lai and Huang, Xing and Titirici, Maria-Magdalena and Taubert, Andreas}, title = {Mesoporous graphite nanoflakes via ionothermal carbonization of fructose and their use in dye removal}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99427}, year = {2014}, abstract = {The large-scale green synthesis of graphene-type two-dimensional materials is still challenging. Herein, we describe the ionothermal synthesis of carbon-based composites from fructose in the iron-containing ionic liquid 1-butyl-3-methylimidazolium tetrachloridoferrate(III), [Bmim][FeCl4] serving as solvent, catalyst, and template for product formation. The resulting composites consist of oligo-layer graphite nanoflakes and iron carbide particles. The mesoporosity, strong magnetic moment, and high specific surface area of the composites make them attractive for water purification with facile magnetic separation. Moreover, Fe3Cfree graphite can be obtained via acid etching, providing access to fairly large amounts of graphite material. The current approach is versatile and scalable, and thus opens the door to ionothermal synthesis towards the larger-scale synthesis of materials that are, although not made via a sustainable process, useful for water treatment such as the removal of organic molecules.}, language = {en} }