@article{UnuabonahAgunbiadeAlfredetal.2017, author = {Unuabonah, Emmanuel Iyayi and Agunbiade, Foluso O. and Alfred, Moses O. and Adewumi, Thompson A. and Okoli, Chukwunonso P. and Omorogie, Martins O. and Akanbi, Moses O. and Ofomaja, Augustine E. and Taubert, Andreas}, title = {Facile synthesis of new amino-functionalized agrogenic hybrid composite clay adsorbents for phosphate capture and recovery from water}, series = {Journal of Cleaner Production}, volume = {164}, journal = {Journal of Cleaner Production}, publisher = {Elsevier}, address = {Oxford}, issn = {0959-6526}, doi = {10.1016/j.jclepro.2017.06.160}, pages = {652 -- 663}, year = {2017}, abstract = {New hybrid clay materials with good affinity for phosphate ions were developed from a combination of biomass-Carica papaya seeds (PS) and Musa paradisiaca (Plantain peels-PP), ZnCl2 and Kaolinite clay to produce iPS-HYCA and iPP-HYCA composite adsorbents respectively. Functionalization of these adsorbents with an organosilane produced NPS-HYCA and NPP-HYCA composite adsorbents. The pH(pzc) for the adsorbents were 7.83, 6.91, 7.66 and 6.55 for iPS-HYCA, NPS-HYCA, iPP-HYCA and NPP-HYCA respectively. Using the Brouer-Sotolongo isotherm model which best predict the adsorption capacity of composites for phosphate, iPP-HYCA, iPS-HYCA, NPP-HYCA, and NPS-HYCA composite adsorbents respectively. When compared with some commercial resins, the amino-functionalized adsorbents had better adsorption capacities. Furthermore, amino-functionalized adsorbents showed improved adsorption capacity and rate of phosphate uptake (as much as 40-fold), as well as retain 94\% (for NPS-HYCA) and 84.1\% (for NPP-HYCA) efficiency for phosphate adsorption after 5 adsorption-desorption cycles (96 h of adsorption time with 100 mg/L of phosphate ions) as against 37.5\% (for iPS-HYCA) and 35\% (for iPP-HYCA) under similar conditions. In 25 min desorption of phosphate ion attained equilibrium. These new amino-functionalized hybrid clay composite adsorbents, which were prepared by a simple means that is sustainable, have potentials for the efficient capture of phosphate ions from aqueous solution. They are quickly recovered from aqueous solution, non-biodegradable (unlike many biosorbent) with potentials to replace expensive adsorbents in the future. They have the further advantage of being useful in the recovery of phosphate for use in agriculture which could positively impact the global food security programme. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{UnuabonahOluOwolabiTaubertetal.2013, author = {Unuabonah, Emmanuel Iyayi and Olu-Owolabi, Bamidele I. and Taubert, Andreas and Omolehin, Elizabeth B. and Adebowale, Kayode O.}, title = {SAPK a novel composite resin for water treatment with very high Zn2+, Cd2+, and Pb2+ adsorption capacity}, series = {Industrial \& engineering chemistry research}, volume = {52}, journal = {Industrial \& engineering chemistry research}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {0888-5885}, doi = {10.1021/ie3024577}, pages = {578 -- 585}, year = {2013}, abstract = {A new sulfonated aniline-modified poly(vinyl alcohol)/K-feldspar (SAPK) composite was prepared. The cation-exchange capacity of the composite was found to be S times that of neat feldspar. The specific surface area and point of zero charge also changed significantly upon modification, from 15.6 +/- 0.1 m(2)/g and 2.20 (K-feldspar) to 73.6 +/- 0.3 m(2)/g and 1.91 (SAPK). Zn2+, Cd2+, and Pb2+ adsorption was found to be largely independent of pH, and the metal adsorption rate on SAPK was higher than that on neat feldspar. This particularly applies to the initial adsorption rates. The adsorption process involves both film and pore diffusion; film diffusion initially controls the adsorption. The Freundlich and Langmuir models were found to fit metal-ion adsorption on SAPK most accurately. Adsorption on neat feldspar was best fitted with a Langmuir model, indicating the formation of adsorbate monolayers. Both pure feldspar and SAPK showed better selectivity for Pb2+ than for Cd2+ or Zn2+.}, language = {en} } @article{BlockGuenterDuarteRodriguesetal.2021, author = {Block, Inga and G{\"u}nter, Christina and Duarte Rodrigues, Alysson and Paasch, Silvia and Hesemann, Peter and Taubert, Andreas}, title = {Carbon adsorbents from spent coffee for removal of methylene blue and methyl orange from water}, series = {Materials / Molecular Diversity Preservation International}, volume = {14}, journal = {Materials / Molecular Diversity Preservation International}, number = {14}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma14143996}, pages = {18}, year = {2021}, abstract = {Activated carbons (ACs) were prepared from dried spent coffee (SCD), a biological waste product, to produce adsorbents for methylene blue (MB) and methyl orange (MO) from aqueous solution. Pre-pyrolysis activation of SCD was achieved via treatment of the SCD with aqueous sodium hydroxide solutions at 90 °C. Pyrolysis of the pretreated SCD at 500 °C for 1 h produced powders with typical characteristics of AC suitable and effective for dye adsorption. As an alternative to the rather harsh base treatment, calcium carbonate powder, a very common and abundant resource, was also studied as an activator. Mixtures of SCD and CaCO3 (1:1 w/w) yielded effective ACs for MO and MB removal upon pyrolysis needing only small amounts of AC to clear the solutions. A selectivity of the adsorption process toward anionic (MO) or cationic (MB) dyes was not observed.}, language = {en} } @article{AdesinaBlockGuenteretal.2023, author = {Adesina, Morenike O. and Block, Inga and G{\"u}nter, Christina and Unuabonah, Emmanuel Iyayi and Taubert, Andreas}, title = {Efficient Removal of Tetracycline and Bisphenol A from Water with a New Hybrid Clay/TiO₂ Composite}, series = {ACS Omega}, volume = {8}, journal = {ACS Omega}, number = {24}, publisher = {American Chemical Society}, address = {Washington}, issn = {2470-1343}, doi = {10.1021/acsomega.3c00184}, pages = {21594 -- 21604}, year = {2023}, abstract = {New TiO₂ hybrid composites were prepared fromkaolinclay, predried and carbonized biomass, and titanium tetraisopropoxideand explored for tetracycline (TET) and bisphenol A (BPA) removalfrom water. Overall, the removal rate is 84\% for TET and 51\% for BPA.The maximum adsorption capacities (q (m))are 30 and 23 mg/g for TET and BPA, respectively. These capacitiesare far greater than those obtained for unmodified TiO2. Increasing the ionic strength of the solution does not change theadsorption capacity of the adsorbent. pH changes only slightly changeBPA adsorption, while a pH > 7 significantly reduces the adsorptionof TET on the material. The Brouers-Sotolongo fractal modelbest describes the kinetic data for both TET and BPA adsorption, predictingthat the adsorption process occurs via a complex mechanism involvingvarious forces of attraction. Temkin and Freundlich isotherms, whichbest fit the equilibrium adsorption data for TET and BPA, respectively,suggest that adsorption sites are heterogeneous in nature. Overall,the composite materials are much more effective for TET removal fromaqueous solution than for BPA. This phenomenon is assigned to a differencein the TET/adsorbent interactions vs the BPA/adsorbent interactions:the decisive factor appears to be favorable electrostatic interactionsfor TET yielding a more effective TET removal.}, language = {en} }