@article{PanSarhanKochovskietal.2022, author = {Pan, Xuefeng and Sarhan, Radwan Mohamed and Kochovski, Zdravko and Chen, Guosong and Taubert, Andreas and Mei, Shilin and Lu, Yan}, title = {Template synthesis of dual-functional porous MoS2 nanoparticles with photothermal conversion and catalytic properties}, series = {Nanoscale}, volume = {14}, journal = {Nanoscale}, number = {18}, publisher = {RSC Publ. (Royal Society of Chemistry)}, address = {Cambridge}, issn = {2040-3372}, doi = {10.1039/d2nr01040b}, pages = {6888 -- 6901}, year = {2022}, abstract = {Advanced catalysis triggered by photothermal conversion effects has aroused increasing interest due to its huge potential in environmental purification. In this work, we developed a novel approach to the fast degradation of 4-nitrophenol (4-Nip) using porous MoS2 nanoparticles as catalysts, which integrate the intrinsic catalytic property of MoS2 with its photothermal conversion capability. Using assembled polystyrene-b-poly(2-vinylpyridine) block copolymers as soft templates, various MoS 2 particles were prepared, which exhibited tailored morphologies (e.g., pomegranate-like, hollow, and open porous structures). The photothermal conversion performance of these featured particles was compared under near-infrared (NIR) light irradiation. Intriguingly, when these porous MoS2 particles were further employed as catalysts for the reduction of 4-Nip, the reaction rate constant was increased by a factor of 1.5 under NIR illumination. We attribute this catalytic enhancement to the open porous architecture and light-to-heat conversion performance of the MoS2 particles. This contribution offers new opportunities for efficient photothermal-assisted catalysis.}, language = {en} } @article{MaiWolskiPuciulMalinowskaetal.2018, author = {Mai, Tobias and Wolski, Karol and Puciul-Malinowska, Agnieszka and Kopyshev, Alexey and Gr{\"a}f, Ralph and Bruns, Michael and Zapotoczny, Szczepan and Taubert, Andreas}, title = {Anionic polymer brushes for biomimetic calcium phosphate mineralization}, series = {Polymers}, volume = {10}, journal = {Polymers}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym10101165}, pages = {17}, year = {2018}, abstract = {This article describes the synthesis of anionic polymer brushes and their mineralization with calcium phosphate. The brushes are based on poly(3-sulfopropyl methacrylate potassium salt) providing a highly charged polymer brush surface. Homogeneous brushes with reproducible thicknesses are obtained via surface-initiated atom transfer radical polymerization. Mineralization with doubly concentrated simulated body fluid yields polymer/inorganic hybrid films containing AB-Type carbonated hydroxyapatite (CHAP), a material resembling the inorganic component of bone. Moreover, growth experiments using Dictyostelium discoideum amoebae demonstrate that the mineral-free and the mineral-containing polymer brushes have a good biocompatibility suggesting their use as biocompatible surfaces in implantology or related fields.}, language = {en} } @article{HentrichTaabacheBrezesinskietal.2017, author = {Hentrich, Doreen and Taabache, Soraya and Brezesinski, Gerald and Lange, Nele and Unger, Wolfgang and Kuebel, Christian and Bertin, Annabelle and Taubert, Andreas}, title = {A Dendritic Amphiphile for Efficient Control of Biomimetic Calcium Phosphate Mineralization}, series = {Macromolecular bioscience}, volume = {17}, journal = {Macromolecular bioscience}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-5187}, doi = {10.1002/mabi.201600524}, pages = {2541 -- 2548}, year = {2017}, abstract = {The phase behavior of a dendritic amphiphile containing a Newkome-type dendron as the hydrophilic moiety and a cholesterol unit as the hydrophobic segment is investigated at the air-liquid interface. The amphiphile forms stable monomolecular films at the airliquid interface on different subphases. Furthermore, the mineralization of calcium phosphate beneath the monolayer at different calcium and phosphate concentrations versus mineralization time shows that at low calcium and phosphate concentrations needles form, whereas flakes and spheres dominate at higher concentrations. Energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron diffraction confirm the formation of calcium phosphate. High-resolution transmission electron microscopy and electron diffraction confirm the predominant formation of octacalcium phosphate and hydroxyapatite. The data also indicate that the final products form via a complex multistep reaction, including an association step, where nano-needles aggregate into larger flake-like objects.}, language = {en} } @article{HentrichTauerEspanoletal.2017, author = {Hentrich, Doreen and Tauer, Klaus and Espanol, Montserrat and Ginebra, Maria-Pau and Taubert, Andreas}, title = {EDTA and NTA effectively tune the mineralization of calcium phosphate from bulk aqueous solution}, series = {Biomimetics}, volume = {2}, journal = {Biomimetics}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2313-7673}, doi = {10.3390/biomimetics2040024}, pages = {21}, year = {2017}, abstract = {This study describes the effects of nitrilotriacetic acid (NTA) and ethylenediaminotetraacetic acid (EDTA) on themineralization of calciumphosphate from bulk aqueous solution. Mineralization was performed between pH 6 and 9 and with NTA or EDTA concentrations of 0, 5, 10, and 15 mM. X-ray diffraction and infrared spectroscopy show that at low pH, mainly brushite precipitates and at higher pH, mostly hydroxyapatite forms. Both additives alter the morphology of the precipitates. Without additive, brushite precipitates as large plates. With NTA, the morphology changes to an unusual rod-like shape. With EDTA, the edges of the particles are rounded and disk-like particles form. Conductivity and pH measurements suggest that the final products form through several intermediate steps.}, language = {en} } @misc{HentrichTauerEspanoletal.2017, author = {Hentrich, Doreen and Tauer, Klaus and Espanol, Montserrat and Ginebra, Maria-Pau and Taubert, Andreas}, title = {EDTA and NTA effectively tune the mineralization of calcium phosphate from bulk aqueous solution}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1095}, issn = {1866-8372}, doi = {10.25932/publishup-46918}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469186}, pages = {23}, year = {2017}, abstract = {This study describes the effects of nitrilotriacetic acid (NTA) and ethylenediaminotetraacetic acid (EDTA) on themineralization of calciumphosphate from bulk aqueous solution. Mineralization was performed between pH 6 and 9 and with NTA or EDTA concentrations of 0, 5, 10, and 15 mM. X-ray diffraction and infrared spectroscopy show that at low pH, mainly brushite precipitates and at higher pH, mostly hydroxyapatite forms. Both additives alter the morphology of the precipitates. Without additive, brushite precipitates as large plates. With NTA, the morphology changes to an unusual rod-like shape. With EDTA, the edges of the particles are rounded and disk-like particles form. Conductivity and pH measurements suggest that the final products form through several intermediate steps.}, language = {en} }