@article{StrehmelLungwitzRexhausenetal.2010, author = {Strehmel, Veronika and Lungwitz, Ralf and Rexhausen, Hans and Spange, Stefan}, title = {Relationship between hyperfine coupling constants of spin probes and empirical polarity parameters of some ionic liquids}, issn = {1144-0546}, doi = {10.1039/C0nj00253d}, year = {2010}, abstract = {The polarity of 1-alkyl-3-methylimidazolium-based ionic liquids containing hexafluorophosphate, tetrafluoroborate, dicyanoimide, or bis(trifluoromethanesulfonyl) imide as anions and a variation of the alkyl-chain length of the cation are investigated by both solvatochromic dyes and spin probes. Two different polarity scales are used for discussion of the polarity of these ionic liquids. These polarity scales are the empirical Kamlet-Taft parameters alpha, beta, and pi* and the hyperfine coupling constants A(iso)(N-14) obtained for spin probes substituted either with an ammonio or a sulfate group at 4-position. The results show that both polarity scales are valid for description of the ionic liquid polarity although differences are found between the two polarity scales. The most clear trend is found in all ionic liquids investigated for the hydrogen-bond accepting ability (beta) and the hyperfine- coupling constant of the anionic spin probe, where both parameters increase for all ionic liquids investigated until an alkyl chain length of eight carbon atoms and keep constant at longer alkyl chains.}, language = {en} } @article{StrehmelRexhausenStrauch2010, author = {Strehmel, Veronika and Rexhausen, Hans and Strauch, Peter}, title = {2,2,6,6-Tetramethylpiperidine-1-yloxyl bound to the imidazolium ion by an acetamido group for investigation of ionic liquids}, issn = {0040-4039}, doi = {10.1016/j.tetlet.2009.11.124}, year = {2010}, abstract = {New spin probes bearing the 2,2,6,6-tetramethylpiperidine-1-yloxyl covalently bound to the imidazolium ion via a methylene spacer and an amide group are synthesized. If the anion is bis(trifluoromethylsulfonylimide) instead of iodide, the new spin probe has a similar structure as that of an ionic liquid. Nevertheless, the new spin probes are useful tools to investigate ionic liquids.}, language = {en} } @article{StrehmelRexhausenStrauch2010, author = {Strehmel, Veronika and Rexhausen, Hans and Strauch, Peter}, title = {Influence of imidazolium bis(trifluoromethylsulfonylimide)s on the rotation of spin probes comprising ionic and hydrogen bonding groups}, issn = {1463-9076}, doi = {10.1039/B920586a}, year = {2010}, abstract = {The influence of the alkyl chain length in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonylimide)s is studied to explore the rotation of piperidine-1-yloxyl derivatives substituted with either hydrogen bonding hydroxy group or ionic substituents, such as the cationic trimethylammonium or the anionic sulfate group placed at the 4 position. Structural variation of the ionic liquids results in differences of their viscosity influencing the rotation of the spin probes. The size of the average rotational correlation times of the spin probes dissolved in the ionic liquids depends further on the additional substituent in 4-position at these spin probes. The rotational correlation time exhibits a linear dependence on the ionic liquid viscosity in the case of the spin probe forming hydrogen bonding with the ionic liquids. In contrast to this, a deviation from the Stokes-Einstein behavior is found in the case of rotation of the charged spin probes in the 1-alkyl-3-methylimidazolium bis( trifluoromethylsulfonylimide) s substituted with a longer alkyl chain. This effect may be explained by phase separation on a molecular level between the charged part of the ionic liquid and the longer alkyl chains bound at the imidazolium ion. Although the neutral and the cationic spin probes show only a slight dependence between ionic liquid structure variation and the hyperfine coupling constants, structural effects cause changes in the hyperfine coupling constants in the case of the anionic spin probes. These probes strongly interact with the imidazolium ion.}, language = {en} } @article{StrehmelRexhausenStrauchetal.2010, author = {Strehmel, Veronika and Rexhausen, Hans and Strauch, Peter and Strehmer, Bernd}, title = {Temperature dependence of interactions between stable piperidine-1-yloxyl derivatives and a semicrystalline ionic liquid}, issn = {1439-4235}, doi = {10.1002/cphc.200900977}, year = {2010}, abstract = {The stable 2,2,6,6-tetramethylpiperidine-1-yloxyl and its derivatives with hydrogen-bond-forming (-OH, -OSO3H), anionic (-OSO3- bearing K+ or [K(18-crown-6)](+) as counter ion), or cationic (-N+-(CH3)(3) bearing I-, BF4-, PF6- or N- (SO2CF3)(2) as counter ion) substituents are investigated in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide over a wide temperature range. The temperature dependence of the viscosity of the ionic liquid is well described by the Vogel-Fulcher-Tammann equation. Interestingly, the temperature dependence of the rotational correlation time of the spin probes substituted with either a hydrogen-bond-forming group or an ionic substituent can be described using the Stokes-Einstein equation. In contrast, the temperature dependence of the rotational correlation time of the spin probe without an additional substituent at the 4-position to the nitroxyl group does not follow this trend. The activation energy for the mobility of the unsubstituted spin probe, determined from an Arrhenius plot of the spin-probe mobility in the ionic liquid above the melting temperature, is comparable with the activation energy for the viscous flow of the ionic liquid, but is higher for spin probes bearing an additional substituent at the 4-position. Quantum chemical calculations of the spin probes using the 6-31G+d method give information about the rotational volume of the spin probes and the spin density at the nitrogen atom of the radical structure as a function of the substituent at the spin probes in the presence and absence of a counter ion. The results of these calculations help in understanding the effect of the additional substituent on the experimentally determined isotropic hyperfine coupling constant.}, language = {en} }