@article{KozlevcarKovscaJaglicicetal.2009, author = {Kozlevcar, Bojan and Kovsca, Igor and Jaglicic, Zvonko and Pevec, Andrej and Kitanovski, Nives and Strauch, Peter and Segedin, Primoz}, title = {Strong antiferromagnetism in isolated anionic dicopper(II) methanoato paddle-wheel complex}, issn = {0011-1643}, year = {2009}, language = {en} } @article{KozlevcarKovscaJaglicicetal.2009, author = {Kozlevcar, Bojan and Kovsca, Igor and Jaglicic, Zvonko and Pevec, Andrej and Kitanovski, Nives and Strauch, Peter and {\`e}egedin, Primož}, title = {Strong antiferromagnetism in isolated anionic dicopper(II) methanoato paddle-wheel complex}, issn = {0011-1643}, year = {2009}, abstract = {A new ionic compound (C5H6NO)(2)[CU2(mu-O2CH)(4)(O2CH)(2)], 1 formed of 4-hydroxypyridinium cations and a complex anion was synthesized. The anion is a paddle-wheel dicopper carboxylate complex with four syn,syn-bridging and two axial anionic methanoato ligands. The XRD structure determination of 1 reveals that the molecular structure is stabilized by two H-bonds between the cations and the axial paddle-wheel anions (N-H center dot center dot center dot O 2.755(3), O-H center dot center dot center dot O 2.489(2) angstrom). The compound exhibits a very strong (2J = 500 cm(- 1)) intra-binuclear anti ferromagnetic interaction noticed already at room temperature attributed to the methanoato intra-binuclear bridges. The typical EPR S = 1 spin system signals of the dicopper paddle-wheel complexes at 90 and 450- 700 mT are found in the room temperature spectrum, but they are poorly seen in the 110 K spectrum. These signals are of very low intensity and are accompanied by a dominant signal at 320 mT, all closely related to a very strong anti ferromagnetic interaction present in 1.}, language = {en} } @article{KozlevcarMateJaglicicetal.2009, author = {Kozlevcar, Bojan and Mate, Elizabeta and Jaglicic, Zvonko and Glažar, Lea and Golobic, Amalija and Strauch, Peter and Moncol, Jan and Kitanovski, Nives and {\`e}egedin, Primož}, title = {A small methanoato ligand in the structural differentiation of copper(II) complexes}, issn = {0277-5387}, doi = {10.1016/j.poly.2009.05.066}, year = {2009}, abstract = {Several copper(II) methanoato complexes, namely mononuclear [Cu(O2CH)(2)(2-mpy)(2)] (1) (2-mpy = 2- methylpyridine), binuclear [Cu-2(mu-O2CH)(4)(2-mpy)(2)] (2), and the polynuclear {[Cu(mu-O2CH)(2)(2-mpy)(2)] [Cu-2(mu- O2CH)(4)]}(n) (3) and {Na-2[Cu(mu-O2CH)(2)(O2CH)(2)][Cu-2(mu-O2CH)(4)]}(n) (4), have been synthesized. The mononuclear complex I is formed by two asymmetric chelate methanoate anions and two 2-methylpyridine molecules, giving a highly distorted 'elongated octahedral' coordination sphere. Complex I decomposes outside the mother-liquid, transforming into a regular isolated binuclear paddle-wheel complex 2 with four intra-binuclear bridging methanoates and two axial 2-mpy ligands. The polynuclear complex 3 is formed of alternate mononuclear and binuclear building blocks resembling the central cores of I and 2, but with significant differences, especially for the methanoates of the mononuclear units. The oxygen atom of the mononuclear unit in the octahedral axial position in 3 is simultaneously coordinated to the axial position of the binuclear paddle-wheel central core, thus enabling a chain type of structure. A chain of alternate mononuclear and binuclear building blocks, as in the neutral compound 3. are found as well in the ionic polymeric compound 4, though two types of bridges are found in 4, while there is only one type in 3. Namely, the axial position of the octahedral mononuclear unit in 4 is occupied by the methanoate oxygen atom that is already a part of the binuclear paddle-wheel unit, while one equatorial methanoate from the mononuclear unit serves as a triatomic bridge to the axial position of the binuclear building block. A very strong antiferromagnetic interaction is found for all the complexes with the paddle-wheel building blocks [Cu-2(mu-O2CH)(4)] 2-4 (-2J = 444-482 cm(-1)), attributed to the methanoate intra-binuclear bridges. On the other hand, this strong antiferromagnetism, found already at room temperature, reduces the intensity of the EPR S = 1 spin signals reported for the isolated paddle-wheel complex 2. For the polymeric 3, only the spin S = 1/2 signals are found in the EPR spectra, and they are assigned to the mononuclear building blocks. No signals with a clear origin are however seen in the room temperature EPR spectrum of the polymeric analogue 4, only the S = 1/2 signals in the low temperature spectra. This feature is suggested to be due to a specific influence between the adjacent S = 1 (binuclear) and S = 1/2 (mononuclear) species via their bridges.}, language = {en} } @article{HalaskaPevecStrauchetal.2013, author = {Halaska, Jozef and Pevec, Andrej and Strauch, Peter and Kozlevcar, Bojan and Koman, Marian and Moncol, Jan}, title = {Supramolecular hydrogen-bonding networks constructed from copper(II) chlorobenzoates with nicotinamide - Structure and EPR}, series = {Polyhedron : the international journal of inorganic and organometallic chemistry}, volume = {61}, journal = {Polyhedron : the international journal of inorganic and organometallic chemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-5387}, doi = {10.1016/j.poly.2013.05.032}, pages = {20 -- 26}, year = {2013}, abstract = {Nicotinamide (nia) has been employed as a supramolecular reagent in the synthesis of four copper(II) chloro- and dichlorobenzoate (Clbz/Cl(2)bz) complexes. The structures of the compounds [Cu(2-Clbz)(2) (nia)(2)(H2O)(2)] (1), icu(4-clbz)(2)(nia)(2)(H2O)(2)] (2), [Cu(3,5-Cl(2)bz)(2)(nia)(2)(H2O)(2)] (3), and [Cu(2,5-Cl(2)bz)(2) (nia)(2)(H2O)]center dot H2O (4) were determined. All the investigated compounds 1-4 reveal water molecules as coordinated. Their structures show distorted octahedral chromophores (CuN2O2O)-N-II'(2), though some are better described as square-planar or square-pyramid due to a large deviation of the axial ligand away from the octahedral z-axis along with different Cu center dot center dot center dot O (axial) lengths. The equatorial positions are occupied in all four cases by two nitrogen (nia-py) atoms and two carboxylate oxygen atoms of two Clbz/Cl(2)bz ligands, while the axial positions are occupied by water molecules. The EPR spectra reveal for all 1-4 compounds a spin state of S = 1/2, mostly with axial symmetry of the spectra. Their resolution is clearly dependant to the crystal symmetry related equivalence of the magnetic sites. The coordination molecules of all compounds are connected by N-H center dot center dot center dot O and O-H center dot center dot center dot O H-bonds from nicotinamide NH2 groups, carboxylate anions and/or water molecules, which create supramolecular chains or further H-bonded into 2D sheets. Steric hindering of the chlorine atoms of the Clbz/Cl(2)bz, especially seen at the coordination of the water molecules, demonstrates its role at the coordination sphere appearance. Despite this influence, the water molecules in 1-4 always assist at the similar supramolecular H-bonded network, almost at the same manner.}, language = {en} } @article{FischerSchmidtStrauchetal.2013, author = {Fischer, Sabrina and Schmidt, Johannes and Strauch, Peter and Thomas, Arne}, title = {An anionic microporous polymer network prepared by the polymerization of weakly coordinating anions}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {52}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {46}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201303045}, pages = {12174 -- 12178}, year = {2013}, language = {en} } @article{SieboldKorabikSchildeetal.2008, author = {Siebold, Matthias and Korabik, Maria and Schilde, Uwe and Mrozinski, Jerzy and Strauch, Peter}, title = {Pentanuclear heterobimetallic 3d-4f complexes of Ln2M3-type - structure and magnetism}, issn = {0366-6352}, year = {2008}, abstract = {From a series of pentanuclear, heterobimetallic complexes of the general composition [{Ln(H2O)n}2{Ni(dto)2}3] · xH2O, four complexes (Ln = Gd(III) with n = 4; Ln = Dy(III), Ho(III), or Er(III), with n = 5; x = 9-12; dto = 1,2- dithiooxalate) were studied due to their large magnetic moments (up to 14.65 B.M.). The magnetic properties of these complete series were measured at room temperature and the temperature dependent magnetic properties of the complexes Gd2Ni3, Dy2Ni3, Ho2Ni3, and Er2Ni3 were studied at room temperature down to 1.8 K. Whereas the intramolecular metal- metal distances were rather long (Ni1-Ni2: 11.0-11.5 {\AA}; Ln-Ni: 6.0-6.3 {\AA}), relatively short intermolecular metal-metal distances (Ni1-Ni2;: 3.5 {\AA}; Er-Er;: 6.0 {\AA}) were found in the crystal lattice, giving rise to weak intermolecular metal-metal interactions. These weak spin interactions were also supported by the EPR spectrum of a powdered sample of the diamagnetically undiluted Gd2Ni3 complex.}, language = {en} } @article{AwadConradKochetal.2010, author = {Awad, Duha Jawad and Conrad, Franziska and Koch, Andreas and Friedrich, Alwin and Poeppl, Andreas and Strauch, Peter}, title = {2,2'-Bipyridin-1,2-dithiolat Gemischtligand-Komplexe : Systhese, Charakterisierung und EPR-Spektroskopie}, issn = {0932-0776}, year = {2010}, abstract = {A series of new 2 2'-bipyridine/1 2-dithiolate transition metal complexes has been synthesised and characterised As 1,2-dithiolate ligands 1,2 dithiooxalate (dto) and 1 2-dithiosquarate (dtsq) were used It follows from the IR spectra that the multidentate dithiolate ligands coordinate exclusively via their sulfur atoms forming an MN2S2 coordination sphere The central metal ions (M) are Cu2+ Ni2+ Pd2+ Pt2+, and Zn2+ The complex [Cu-II(bpy)(dto)] could be studied by EPR spectroscopy and was measured as powder diamagnetically diluted in the isostructural [Ni-II(bpy)(dto)] host structure The spin density contribution calculated from the experimental parameters is compared with the electronic situation in the frontier orbitals namely in the semi occupied SOMO of the copper complex derived from quantum chemical calculations on different levels (EHT and DFT)}, language = {de} } @article{AwadConradKochetal.2010, author = {Awad, Duha Jawad and Conrad, Franziska and Koch, Andreas and Schilde, Uwe and Poeppl, Andreas and Strauch, Peter}, title = {1,10-phenanthroline-dithiolate mixed ligand transition metal complexes : synthesis, characterization and EPR spectroscopy}, issn = {0020-1693}, doi = {10.1016/j.ica.2010.01.021}, year = {2010}, abstract = {A series of new N2S2 mixed ligand transition metal complexes, where N-2 is phenanthroline and S-2 is 1,2- dithiooxalate (dto) or 1,2-dithiosquarate (dtsq), has been synthesized and characterized. IR spectra reveal that the 1,2- dithiolate ligands are coordinated via the sulfur atoms forming a N2S2 coordination sphere. The copper(II) complex [Cu(phen)(dto)] was studied by EPR spectroscopy as a diamagnetically diluted powder. The diamagnetic dilution resulted from doping of the copper complex into the isostructural host lattice of the nickel complex [Ni(phen)(dto)]. The electronic situation in the frontier orbitals of the copper complex calculated from the experimental data is compared to the results of EHT and DFT calculations. Furthermore, one side product, chlorobis(1,10-phenanthroline)copper(I) ethanol solvate hydrate [(phen)(2)CuCl]center dot C2H5OH center dot H2O, was formed by a reduction process and characterized by X-ray diffraction. In the crystal packing one-dimensional columns of dimers are formed, stabilized by significant pi-pi interactions.}, language = {en} } @article{KozlevcarOdlazekGolobicetal.2006, author = {Kozlevcar, Bojan and Odlazek, Darja and Golobic, Amalija and Pevec, Andrej and Strauch, Peter and Segedin, Primoz}, title = {Complexes with lignin model compound vanillic acid : two different carboxylate ligands in the same dinuclear tetracarboxylate complex [Cu-2(C8H7O4)(2)(O2CCH3)(2)(CH3OH)(2)]}, issn = {0277-5387}, doi = {10.1016/j.poly.2005.08.031}, year = {2006}, abstract = {Two copper(II) coordination compounds with vanillic acid C8H8O4 (1), namely [Cu- 2(C8H7O4)(2)(O2CCH3)(2)(CH3OH)(2)] (2) and [Cu-2(C8H7O4)(4)(H2O2)(2)] (3), were synthesized and characterized. Single crystals of 1-3 were obtained and their crystal structures determined. The structure of 2 shows dinuclear cage structure of copper acetate hydrate type, however with two different carboxylates, acetates and vanillic acid anions,. respectively. Both bridging anions are in pairs in trans orientation. Methanol molecules are apically coordinated (Cu-O7 2.160(2) angstrom), fulfilling square-pyramidal coordination sphere around both copper ions. The compound 2 decomposes outside mother-liquid (yielding [Cu-2(C8H7O4)(2)(O2CCH3)(2)(H2O)(2)] (2a)) with the removal of methanol, but without significant change of the dicopper tetracarboxylate cage structure, as noticed by mu(eff) 1.48 BM for 2a. Similar was found also in the X-band EPR spectra with three signals H-z1, H-perpendicular to 2 and H-z2 in the region from 0 to 600 mT. The structure of free vanillic acid 1 is composed of dimeric units of two molecules, connected by two parallel hydrogen bonds between carboxylate group of each other (O1-H(...)O2 2.642(3) angstrom), while the structure of 3 is of [Cu-2(O2CCH3)(4)(H2O)(2)] type. Interestingly, an additional signal in the EPR spectra of 3 is found at 80 mT (H- perpendicular to 1) at 298 and at 116 K, next to three signals H-z1, H-perpendicular to 2 and H-z2.}, language = {en} } @article{AwadKochMickleretal.2012, author = {Awad, Duha Jawad and Koch, Andreas and Mickler, Wulfhard and Schilde, Uwe and Strauch, Peter}, title = {EPR spectroscopy of 4, 4 '-Bis(tert-butyl)-2, 2 '-bipyridine-1, 2-dithiolatocuprates(II) in host lattices with different coordination geometries}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {638}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0044-2313}, doi = {10.1002/zaac.201100517}, pages = {965 -- 975}, year = {2012}, abstract = {A series of new heteroleptic MN2S2 transition metal complexes with M = Cu2+ for EPR measurements and as diamagnetic hosts Ni2+, Zn2+, and Pd2+ were synthesized and characterized. The ligands are N2 = 4, 4'-bis(tert-butyl)-2, 2'-bipyridine (tBu2bpy) and S2 =1, 2-dithiooxalate, (dto), 1, 2-dithiosquarate, (dtsq), maleonitrile-1, 2-dithiolate, or 1, 2-dicyanoethene-1, 2-dithiolate, (mnt). The CuII complexes were studied by EPR in solution and as powders, diamagnetically diluted in the isostructural planar [NiII(tBu2bpy)(S2)] or[PdII(tBu2bpy)(S2)] as well as in tetrahedrally coordinated[ZnII(tBu2bpy)(S2)] host structures to put steric stress on the coordination geometry of the central CuN2S2 unit. The spin density contributions for different geometries calculated from experimental parameters are compared with the electronic situation in the frontier orbital, namely in the semi-occupied molecular orbital (SOMO) of the copper complex, derived from quantum chemical calculations on different levels (EHT and DFT). One of the hosts, [NiII(tBu2bpy)(mnt)], is characterized by X-ray structure analysis to prove the coordination geometry. The complex crystallizes in a square-planar coordination mode in the monoclinic space group P21/a with Z = 4 and the unit cell parameters a = 10.4508(10) angstrom, b = 18.266(2) angstrom, c = 12.6566(12) angstrom, beta = 112.095(7)degrees. Oxidation and reductions potentials of one of the host complexes, [Ni(tBu2bpy)(mnt)], were obtained by cyclovoltammetric measurements.}, language = {en} }