@article{SchmittWinterBertinettietal.2015, author = {Schmitt, Clemens Nikolaus Zeno and Winter, Alette and Bertinetti, Luca and Masic, Admir and Strauch, Peter and Harrington, Matthew J.}, title = {Mechanical homeostasis of a DOPA-enriched biological coating from mussels in response to metal variation}, series = {Interface : journal of the Royal Society}, volume = {12}, journal = {Interface : journal of the Royal Society}, number = {110}, publisher = {Royal Society}, address = {London}, issn = {1742-5689}, doi = {10.1098/rsif.2015.0466}, pages = {8}, year = {2015}, abstract = {Protein metal coordination interactions were recently found to function as crucial mechanical cross-links in certain biological materials. Mussels, for example, use Fe ions from the local environment coordinated to DOPA-rich proteins to stiffen the protective cuticle of their anchoring byssal attachment threads. Bioavailability of metal ions in ocean habitats varies significantly owing to natural and anthropogenic inputs on both short and geological spatio-temporal scales leading to large variations in byssal thread metal composition; however, it is not clear how or if this affects thread performance. Here, we demonstrate that in natural environments mussels can opportunistically replace Fe ions in the DOPA coordination complex with V and Al. In vitro removal of the native DOPA metal complexes with ethylenediaminetetraacetic acid and replacement with either Fe or V does not lead to statistically significant changes in cuticle performance, indicating that each metal ion is equally sufficient as a DOPA cross-linking agent, able to account for nearly 85\% of the stiffness and hardness of the material. Notably, replacement with Al ions also leads to full recovery of stiffness, but only 82\% recovery of hardness. These findings have important implications for the adaptability of this biological material in a dynamically changing and unpredictable habitat.}, language = {en} } @article{StrauchNeumannKellingetal.2015, author = {Strauch, Peter and Neumann, Mike and Kelling, Alexandra and Schilde, Uwe}, title = {Bis(1,2-dithiosquarato)nickelates(II): Synthesis, Structure, EPR and Thermal Behavior}, series = {Acta chimica Slovenica}, volume = {62}, journal = {Acta chimica Slovenica}, number = {2}, publisher = {Drustvo}, address = {Ljubljana}, issn = {1318-0207}, pages = {288 -- 296}, year = {2015}, abstract = {1,2-Dithiosquaratonickelates are available by direct synthesis from metal salts with dipotassium-1,2-dithiosquarate and the appropriate counter cations. The synthesis and characterization, including mass spectrometry, of a series 1,2-dithiosquaratonickelates(II), [Ni(dtsq)(2)](2-), with several "onium" cations is reported and the X-ray structures of two diamagnetic complexes, (HexPh(3)P)(2)[Ni(dtsq)(2)] and (BuPh3P)(2)[Ni(dtsq)(2)] with sterically demanding counter ions are presented. The diamagnetic nickel complexes have been doped as host lattices with traces of Cu(II) to measure EPR for additional structural information. The thermal behavior of this series is studied by thermogravimetry and differential thermal analysis (TG/DTA). The thermolysis in air as well as under nitrogen atmosphere of these complexes results in nickel oxide nano-particles in all cases, which are characterized by X-ray powder diffraction.}, language = {en} } @article{SeckerBrosnanLimbergetal.2015, author = {Secker, Christian and Brosnan, Sarah M. and Limberg, Felix Rolf Paul and Braun, Ulrike and Trunk, Matthias and Strauch, Peter and Schlaad, Helmut}, title = {Thermally Induced Crosslinking of Poly(N-Propargyl Glycine)}, series = {Macromolecular chemistry and physics}, volume = {216}, journal = {Macromolecular chemistry and physics}, number = {21}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201500223}, pages = {2080 -- 2085}, year = {2015}, abstract = {As polypeptoids become increasingly popular, they present a more soluble and processable alternative to natural and synthetic polypeptides; the breadth of their potential functionality slowly comes into focus. This report analyzes the ability of an alkyne-functionalized polypeptoid, poly(N-propargyl glycine), to crosslink upon heating. The crosslinking process is analyzed by thermal analysis (differential scanning calorimetry and thermogravimetric analysis), Fourier-transform infrared, electron paramagnetic resonance, and solid-state NMR spectroscopy. While a precise mechanism cannot be confidently assigned, it is clear that the reaction proceeds by a radical mechanism that exclusively involves the alkyne functionality, which, upon crosslinking, yields alkene and aromatic products.}, language = {en} }