@article{VaskovaKitanovskiJaglicicetal.2014, author = {Vaskova, Zuzana and Kitanovski, Nives and Jaglicic, Zvonko and Strauch, Peter and Ruzickova, Zdenka and Valigura, Dusan and Koman, Marian and Kozlevcar, Bojan and Moncol, Jan}, title = {Synthesis and magneto-structural characterization of copper(II) nitrobenzoate complexes containing nicotinamide or methylnicotinamide ligands}, series = {Polyhedron : the international journal of inorganic and organometallic chemistry}, volume = {81}, journal = {Polyhedron : the international journal of inorganic and organometallic chemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-5387}, doi = {10.1016/j.poly.2014.07.017}, pages = {555 -- 563}, year = {2014}, abstract = {Three new copper(II) 4-nitrobenzoato coordination compounds (4-NO(2)bz(-) = 4-nitrobenzoate anions) with N-methylnicotinamide (mna) [Cu(4-NO(2)bz)(2)(mna)(2)(H2O)] (1), [Cu(4-NO(2)bz)(2)(mu-mna)(H2O)](2) (2) and [Cu(mu-4-NO(2)bz)(2)(mna)](2) (3) were synthesized and characterized. Due to a comparison, additional two related compounds [Cu(3,5-(NO2)(2)bz)(2)(mna)(2)(H2O)] (4) (nia = nicotinamide, 3,5-(NO2)(2)bz(-) = 3,5-dinitrobenzoate anions) and [Cu(mu-2-NO(2)bz)(2)(mna)](2) (5) (2-NO(2)bz(-) = 2-nitrobenzoate anions) were isolated. The mononuclear compounds with mna 1 and nia 4 show CuO2N2O chromophores with the water molecule placed at the apex of the square pyramid. The square-pyramidal coordination sphere CuO3NO in 2 differs to CuO2N2O in 1 and 4. Differently, the water molecule is in 2 at the basal-plane, while two mna molecules serve also as bridges via N-py and 0-amido enabling a dinuclear molecular structure 1, 2 and 4 are paramagnetic though a dinuclear structure is seen in 2, while a clear-cut strong antiferromagnetic (AFM) coupling (2J -300 cm(-1)) is found for the compounds 3 and 5. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{StrehmelBerdzinskiStrauchetal.2014, author = {Strehmel, Veronika and Berdzinski, Stefan and Strauch, Peter and Hoffmann-Jacobsen, Kerstin and Strehmel, Bernd}, title = {Investigation of molecular solvents and ionic liquids with a dual probe}, series = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, volume = {228}, journal = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, number = {2-3}, publisher = {De Gruyter}, address = {Berlin}, issn = {0942-9352}, doi = {10.1515/zpch-2014-0453}, pages = {155 -- 169}, year = {2014}, abstract = {A dual probe was investigated by UV-Vis, fluorescence, and ESR spectroscopy. It comprises the pyrene chromophore and the paramagnetic 2,2,6,6-tetramethylpiperidinyl-N-oxyl radical that are covalently linked together via an ester bridge. The dual probe was used to investigate molecular solvents of different polarity as well as ionic liquids bearing either imidazolium or pyrrolidinium cations and various anions, such as bis(trifluoromethylsulfonyl)imide, tetrafluoroborate, tris(pentafluoroethyl)trifluorophosphate, or dicyanamide. The dual probe does not show solvatochromism that is typical for some pyrenes. Furthermore, the dual probe is considerable less mobile compared to 2,2,6,6-tetramethylpiperidinyl-N-oxyl (TEMPO) without additional substituent as detected by ESR spectroscopy. This is caused by the bulky pyrenyl substituent bound at the dual probe resulting in a reduced mobility of the dual probe.}, language = {en} } @article{WinterThielZabeletal.2014, author = {Winter, Alette and Thiel, Kerstin and Zabel, Andre and Klamroth, Tillmann and Poeppl, Andreas and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas and Strauch, Peter}, title = {Tetrahalidocuprates(II) - structure and EPR spectroscopy. Part 2: tetrachloridocuprates(II)}, series = {New journal of chemistry}, volume = {38}, journal = {New journal of chemistry}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1144-0546}, doi = {10.1039/c3nj01039b}, pages = {1019 -- 1030}, year = {2014}, abstract = {We present and discuss the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of five tetrachloridocuprate(II) complexes to supply a useful tool for the structural characterisation of the [CuCl4](2-) moiety in the liquid state, for example in ionic liquids, or in solution. Bis(benzyltriethylammonium)-, bis(trimethylphenylammonium)-, bis(ethyltriphenylphosphonium)-, bis(benzyltriphenylphosphonium)-, and bis(tetraphenylarsonium) tetrachloridocuprate(II) were synthesised and characterised by elemental, IR, EPR and X-ray analyses. The results of the crystallographic analyses show distorted tetrahedral coordination geometry of all [CuCl4](2-) anions in the five complexes and prove that all investigated complexes are stabilised by hydrogen bonds of different intensities. Despite the use of sterically demanding ammonium, phosphonium and arsonium cations to obtain the separation of the paramagnetic Cu(II) centres for EPR spectroscopy no hyperfine structure was observed in the EPR spectra but the principal values of the electron Zeeman tensor, g(parallel to) and g(perpendicular to), could be determined. With these EPR data and the crystallographic parameters we were able to carry out a correlation study to anticipate the structural situation of tetrachloridocuprates in different physical states. This correlation is in good agreement with DFT calculations.}, language = {en} }