@unpublished{NazaikinskiiSchulzeSternin2000, author = {Nazaikinskii, Vladimir and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Quantization methods in differential equations : Part II: Quantization by the method of ordered operators (Noncommutative Analysis) : Chapter 1: Noncommutative Analysis: Main Ideas, Definitions, and Theorems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25762}, year = {2000}, abstract = {Content: 0.1 Preliminary Remarks Chapter 1: Noncommutative Analysis: Main Ideas, Definitions, and Theorems 1.1 Functions of One Operator (Functional Calculi) 1.2 Functions of Several Operators 1.3 Main Formulas of Operator Calculus 1.4 Main Tools of Noncommutative Analysis 1.5 Composition Laws and Ordered Representations}, language = {en} } @unpublished{NazaikinskiiSchulzeSternin1999, author = {Nazaikinskii, Vladimir E. and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Quantization methods in differential equations : Chapter 2: Quantization of Lagrangian modules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25582}, year = {1999}, abstract = {In this chapter we use the wave packet transform described in Chapter 1 to quantize extended classical states represented by so-called Lagrangian sumbanifolds of the phase space. Functions on a Lagrangian manifold form a module over the ring of classical Hamiltonian functions on the phase space (with respect to pointwise multiplication). The quantization procedure intertwines this multiplication with the action of the corresponding quantum Hamiltonians; hence we speak of quantization of Lagrangian modules. The semiclassical states obtained by this quantization procedure provide asymptotic solutions to differential equations with a small parameter. Locally, such solutions can be represented by WKB elements. Global solutions are given by Maslov's canonical operator [2]; also see, e.g., [3] and the references therein. Here the canonical operator is obtained in the framework of the universal quantization procedure provided by the wave packet transform. This procedure was suggested in [4] (see also the references there) and further developed in [5]; our exposition is in the spirit of these papers. Some further bibliographical remarks can be found in the beginning of Chapter 1.}, language = {en} } @unpublished{SavinSchulzeSternin2000, author = {Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Elliptic operators in subspaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25701}, year = {2000}, abstract = {We construct elliptic theory in the subspaces, determined by pseudodifferential projections. The finiteness theorem as well as index formula are obtained for elliptic operators acting in the subspaces. Topological (K-theoretic) aspects of the theory are studied in detail.}, language = {en} } @unpublished{SchulzeSterninSavin1999, author = {Schulze, Bert-Wolfgang and Sternin, Boris and Savin, Anton}, title = {The homotopy classification and the index of boundary value problems for general elliptic operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25568}, year = {1999}, abstract = {We give the homotopy classification and compute the index of boundary value problems for elliptic equations. The classical case of operators that satisfy the Atiyah-Bott condition is studied first. We also consider the general case of boundary value problems for operators that do not necessarily satisfy the Atiyah-Bott condition.}, language = {en} } @unpublished{NazaikinskiiSchulzeSternin2001, author = {Nazaikinskii, Vladimir and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Localization problem in index theory of elliptic operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26175}, year = {2001}, abstract = {This is a survey of recent results concerning the general index locality principle, associated surgery, and their applications to elliptic operators on smooth manifolds and manifolds with singularities as well as boundary value problems. The full version of the paper is submitted for publication in Russian Mathematical Surveys.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2002, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Elliptic theory on manifolds with nonisolated singularities : III. The spectral flow of families of conormal symbols}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26386}, year = {2002}, abstract = {When studyind elliptic operators on manifolds with nonisolated singularities one naturally encounters families of conormal symbols (i.e. operators elliptic with parameter p ∈ IR in the sense of Agranovich-Vishik) parametrized by the set of singular points. For homotopies of such families we define the notion of spectral flow, which in this case is an element of the K-group of the parameter space. We prove that the spectral flow is equal to the index of some family of operators on the infinite cone.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2002, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Elliptic theory on manifolds with nonisolated singularities : IV. Obstructions to elliptic problems on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26415}, year = {2002}, abstract = {The obstruction to the existence of Fredholm problems for elliptic differentail operators on manifolds with edges is a topological invariant of the operator. We give an explicit general formula for this invariant. As an application we compute this obstruction for geometric operators.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2002, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Elliptic theory on manifolds with nonisolated singularities : II. Products in elliptic theory on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26335}, year = {2002}, abstract = {Exterior tensor products of elliptic operators on smooth manifolds and manifolds with conical singularities are used to obtain examples of elliptic operators on manifolds with edges that do not admit well-posed edge boundary and coboundary conditions.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 5: Manifolds with isolated singularities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26659}, year = {2003}, abstract = {Contents: Chapter 5: Manifolds with Isolated Singularities 5.1. Differential Operators and the Geometry of Singularities 5.1.1. How do isolated singularities arise? Examples 5.1.2. Definition and methods for the description of manifolds with isolated singularities 5.1.3. Bundles. The cotangent bundle 5.2. Asymptotics of Solutions, Function Spaces,Conormal Symbols 5.2.1. Conical singularities 5.2.2. Cuspidal singularities 5.3. A Universal Representation of Degenerate Operators and the Finiteness Theorem 5.3.1. The cylindrical representation 5.3.2. Continuity and compactness 5.3.3. Ellipticity and the finiteness theorem 5.4. Calculus of ΨDO 5.4.1. General ΨDO 5.4.2. The subalgebra of stabilizing ΨDO 5.4.3. Ellipticity and the finiteness theorem}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2004, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 7: The index problem on manifolds with singularities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26700}, year = {2004}, abstract = {Contents: Chapter 7: The Index Problemon Manifolds with Singularities Preface 7.1. The Simplest Index Formulas 7.1.1. General properties of the index 7.1.2. The index of invariant operators on the cylinder 7.1.3. Relative index formulas 7.1.4. The index of general operators on the cylinder 7.1.5. The index of operators of the form 1 + G with a Green operator G 7.1.6. The index of operators of the form 1 + G on manifolds with edges 7.1.7. The index on bundles with smooth base and fiber having conical points 7.2. The Index Problem for Manifolds with Isolated Singularities 7.2.1. Statement of the index splitting problem 7.2.2. The obstruction to the index splitting 7.2.3. Computation of the obstruction in topological terms 7.2.4. Examples. Operators with symmetries 7.3. The Index Problem for Manifolds with Edges 7.3.1. The index excision property 7.3.2. The obstruction to the index splitting 7.4. Bibliographical Remarks}, language = {en} }